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Computational Geometry in Euclidean and Riemannian Spaces

Distance computations and related concepts.

Riemannian VD in 2d

General Case

For a connected and closed domain G € M with boundary JG
contained in a metric space (M. d) we define the Medial Axis
(Fig. 1) as the closure of

{m € G : m has two shortest paths to JG}.

Alternatively the medial axis can be characterized via the clo-
sure of the centres m of maximal circles (spheres) with radius r
that fit into (5. Using the so called radius function

R: JFLIA(G] — REH m =,
we can write the inverse medial axis transform (IMAT) as:

3 = U B(m,R(m)).
meMA(G)

The medial axis is related to the concepts Cut Locus (Fig. 2) and
Symmetry Set (Fig. 3) which define supersets of the medial axis
or the well known Voronoi Diagram (Fig. 4):

® The Cut Locus C'L(D) of D < M is the set of points in
M, that have at least two shortest paths to D.

MA(G)=CL(0G) NG
® The Symmetry Set SY (D) is a local counterpart of the Cut
Locus requirung two locally shortest paths to D.
MA(D)C CL(OD) C SY(aD)
® The Cut Locus for a set of Points P = {py,...
known as the Voronoi Diagram V D{ P) of P.
VD(P) = CL(P)
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A special case of a metric space is the euclidean space R" to-
gether with the metric d(z.y) := |x — y|| for z,y € R". The
following gives some two-dimensional examples:

Riemannian VD in 3d

Riemannian Case

The definitions above use metric spaces since all concepts make
use of the distance function d. A metric space with geometric
background is given by a Riemannian Manifold which is a differ-
entiable manifold together with a so called metric tensor (g;;).
The metric tensor provides an additional structure that enables
us to measure local distances and angles on the manifold. As a
special case we consider M C R® defined via
M = {{u,v, h(u,v)) : (u,v) € U},
using a height function h : I/ ¢ E* — R. In this case the
metric tensor can be explicitly written as
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The metric tensor induces the so called Riemannian metric:

d(p.q) =inf{L(c) . ccurve in M that connects p with ¢}
Here we make use of the length L{c) of a surface curve c. A
curve that realizes the distance d(p, ¢} is called a shortest path.
Unfortunately these global shortest paths are usually inacces-
sible to analytic methods from the field of differential geome-
try. However, locally shortest paths (so called Geodesics) can
be computed using the Geodesic ODE-system:

2
up + Z I‘f;,u:u,; =0 (k=12)

ij=1

The Christoffel symbols Ffj can be directly obtained from the
Riemannian metric tensor (g;;). Much effort has been put into
research on computing the aforementioned concepts on two-
or three-dimensional height surfaces:

® Fig. 5: Medial Axis Transform on a 2d height surface.

* Fig. 6: Inverse Medial Axis Transform on a 3d hyper sur-
face embedded in !, drawn in the parametrer space .
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Cut Loci and Geodesics

Distance computations

The problem of computing the distance d(p, g) of two arbitrary
points p.g € M can be reduced to finding all geodesics that
connect p and ¢. To adress this problem we let O,(s. ) denote
the endpoint of the unique geodesic starting at p in the direc-
tion parametrized by an angle parameter  with length s and
call O, : R x [0,27) — M geodesic offset function.

Using this notation the shortest path problem is expressed as
the problem of finding all roots (s, ©) of the function

F(s,p) := Op(s, ) — 1.

A geometrically motivated homotopy approach is given by

H(s, 0, \) = Oyls, ) — a(\)

where g : [0,1] — M isa C''-curve with q(£) = g. This curve can
be chosen arbitrarily to a large extent, taking into account the
focal curves with respect to p. Starting from the point ( s. ¢g. 0)
with known sy, ¢ given by O,(sq, o) = ¢(0), we trace the zero
curve H~1(0) collecting all points (s. . A) with A = £.

® Fig. 7: Three different geodesics that connect p and q.

® Fig. 8: Projection of H '(0) into the -A-plane.
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In this case we have computed all geodesics that connect p
and g, i.e. we have parameters (s1, 1), (82, @a). (83, 23) with
Oylsi, i) = g (i = 1,2,3). Since the shortest path is always a
geodesic we obtain the shortest path O,(-, ) : [0,s] — M by
choosing s = min;{s;} and y accordingly. By the definition of
our metric we have

d(p.q) = s.
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