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Nonlinear Electric Circuit Analysis from a Differential Geometric Point of View

Computing Operation Points for a Special Class of Electronic Circuits

The behaviour of electrical circuits can be described by a set
of algebraic- and differential equations (DAE) which can be
solved by numerical analysis methods. In this project geometric
methods will be used to find operation points.

Especially problematic for the numerical analysis of electronic
circuits are non-linear electronic devices, whose functionality
is based on the feedback principle or electronic devices, whose
voltagefcurrent characteristic includes a region of negative
slope (negative differential resistance).

For modeling this class of electronic circuits, it will be necessary
to use differential equations with singularities.

Van-Der-Pol-Oscillator

The degenerated Van-der-Pol-Oscillator is a simple circuit con-
sisting of a resistor and a capacitor that are connected in a
circle, described by:
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with v:voltage, i:current and where the differential equation
(1) characterizes the capacity and the non-linear relation (2)
defines the resistance.

Figure 1) Cicuit of Van-der-Pol-Oscillator

A diagram of this simple oscillator is shown in Figure 1.
To understand this example the shape of the curve of the
nonlinear resistance is important. This is shown in Figure 2.

Figure 2) The resistance curve is regarded as a manifold.

The curve shown in Figure 2 may also be similarly considered as
a manifold containing the dynamics. From this geometric point
of view, the solution of (2) is a one-dimensional manifold, e. g.,
a curve M in the plane, and the differential equation generates
a dynamic which should be solved with respect to the current
i. But this is not feasible globally, since in the extrema of the
curve wrt. v the dynamic degenerates to (). Since i £ 0 in these
points, they can not be equilibria and therefore the model does
not capture the behaviour of the circuit.

The described problem can be solved by a Tichonov regularisa-
tion which transforms the algebraic equation to a differential
equation
di 2 33
EE = —v—1
with = near zero. The dynamic of the system is now generically
smooth and the formerly singular points exhibit a very fast
dynamic, the system “jumps” from a formerly singular point
tangentially to another area of the manifold. We want to
capture this phenomenon with differential geometric tools
and trace the curve on the manifold to an extremum where it

jumps tangentially, thus following the oscillating path.

+ . (3)

The result of the Tichonov regularisation for the simple Van-
der-Pol example is shown in Figure 3.

Figure 3) Result of the Tichonov regularisation for Van-der-Pol
example

In higher dimensions the jumps described above occur in a
special class of folded manifolds. These are embedded in a
space whose axes can be associated with unlimited voltages
and currents of the circuit. Now, a geometrically interpretable
mapping S assigns drop points to bounce points. The drop
points are located on maxima curves - the bounce points lie on
a coresponding sheet of the same manifold. Such a jump can
be done in different ways. (see Figure below right)

First, the points can be mapped by orthogonal projection on a
resulting perpendicular curve. On the other hand, the points
can be mapped by extending the current tangent vector at the
time of the bounce. The last option is certainly more difficult
to calculate but is still possible in an acceptable time.
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Figure 4) Tracing on Surfaces

Using Homotopy Methods for Finding
Starting Points

The methods described above assume that a starting point
can easily be found. This is not true for manifolds with a
co-dimension greater than one. To acquire such a point it
Is possible to use homotopy methods which have become
a powerful tool in finding solutions of wvarious nonlinear
problems, such as zeros or fixed points of maps.

A distinctive advantage of the homotopy method is that the
algorithm generated by it exhibits the global convergence
under weaker conditions. The homotopy concept is used to
determine solutions of high-dimensional non-linear equation
systems by initially finding a solution to a simpler problem and
then systematically transforming it to the actual problem by
embedding it in a homotopy.

Consider the non-linear equation g(w)=0, with O being a reg-
ular value. The implicit function theorem implies the existence
of a curve w/(A) which solves:

H(w, XA wy) = glw) + (A= Dglwg), Ae[0,]] (4)

If we formulate the map g(w) so that its zero set is a point on
the manifold, the curve w(A) will converge towards it under
certain conditions. This methods was used by NaB and Wolter
to find solutions for similar geometric problems. By using this
experience this methods can be applied to higher dimensions.

Basic Principles of Tracing Curves on
Two-Dimensional Manifolds Embedded in
Three-Dimensional Space

The determination of operating points of the previously
described systems is still not generally solved. There exist
homotopy methods that can be used to calculate the isolated
zeros of the system of equations. However, these can not easily
be used for oscillating systems. Moreover, for example the
equations generally used in SPICE simulators are not suitable
for the use of homotopy methods.

Our approach consists in the geometric interpretation of the
system. We do not want to determine directly the operat-
ing points using homotopy methods. Instead, we use the
homotopy-methods only to search individual starting points on
the critical manifold. From there, numerical algorithms of the
differential geometry are used to trace the flow on the manifold.

We can trace a curve on the manifold by numerically inte-
grating the given differential equations which describes a
tangent vector field on the manifold. This should lead us to an
operation point or, if an oscillating circuit is given, represents
the set of states.

Following the curve, we want to consider what happens,
when the curve reaches a fold, i. e. a generalized extremum
situation on the manifold. This will be the case if the circuit
oscillates: the operation point jumps from the extremum to
another (non-neighboring) point of the manifold. Therefore
we're interested in a submanifold 5,4 of maximum points, as
they characterize points where a jJump may start. Additionally,
we want to determine from the submanifold (S 4) a second one
by orthogonal projection(Sy) that represents the set of points
where a jump can end.

To trace a path on a two-dimensional manifold M embedded in
the /" we can define a differentiable manifold by

glx,y,z) =0 (5)

to define a path on that manifold we use the parameter ¢:
gla(t), y(t), z(t)) =0 (6)

Supposing we need the set of maximum points in z-direction,
we differentiate wrt. = by:

g.(r,y,2) =0 (7)
Differentiate wrt. ¢ leads to:

dg (x(t),y(t), 2(t))
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We can easily trace the curve of maxima if we use a function A
of = and y instead of z.

gla(t), y(t), Max(t), u(t))) = 0

= Lg((t), y(t), Mz(t),y(t))) = 0
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With it we are able to calculate A.

As an example we see in the last Figures the implicit function:
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€I = —z:
The shape of the manifold can be taken as an example set of
operation points.
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