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Abstract

A generalization of a theorem by Pegna and Wolter—called Linkage Curve Theorem—is
presented. The new theorem provides a condition for joining two surfaces with high order geometric
continuity of arbitrary degree. It will be shown that the Linkage Curve Theorem can be generalized
even for the case when the common boundary curve is 6lyd 1999 Elsevier Science B.V. Al
rights reserved.
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1. Introduction

The construction of smooth, composite surfaces by joining adjacent surfaces is still an
interesting research topic in CAGD. Joining surfaces may occur along either a constant
parameter line or an arbitrary surface curve shared by the two surfaces. A typical example
for the former situation is the construction of a composite surface by merging parametric
patches along their borders. For the latter one the most important case to be considered is
blending, where a smooth transition surface needs to be joined to a surface with high order
smoothness along a contact curve.

Two theorems on joining curvature continuous surfaces were proved in (Pegha and
Wolter, 1992). The first one, called tid@ree Tangents Theorestates the following:
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Theorem A. Two surfaces tangent at a poipg have the same normal curvatures if and
only if their normal curvatures agree in three tangent directions, of which any pair is
linearly independent.

The second theorem was calleidkage Curve TheorerfA curve is called linkage curve
if it is common surface curve of both surfaces.)

Theorem B. Two surfaces tangent along @l-smooth linkage curve are curvature
continuous if and only if at every point of the linkage curve, their normal curvature agrees
for a direction other than the tangent to the linkage curve.

The generalization of the Three Tangents Theorem for higher order of smoothness was
addressed in (Wolter and Tuohy, 1992, p. 256) cf. Corollary 31" Tangents Theorem,
(characterization of 4+ 1 order surface contact at a point). In this paper a generalization of
the Linkage Curve Theorem is given. The outline of the paper is the following. In Section
2 the concept of “higher order smoothness” will be briefly introduced. In Section 3 the
generalization of Theorem B is given. Finally we summarize our results in Section 4.

In the paper bold letters will denote vectors frit.

2. Higher order smoothness of curves and surfaces

We shall call a curve (surfac&}” continuous if there is a representation of it with a
regularC" map from a closed, bounded interval (or from a compact, simply connected
domair® in R?) into R3. As usual regularity means here that the first order differentials of
the curve (or surface) are of full rank. Note that this property is preserved at every regular
C" reparameterizatiorf the curve (or surface).

(See further details in (DeRose and Barsky, 1985; Gregory, 1989; Herron, 1987).)

We say that two surfaces haveGd join if they areG" continuous, their intersection
contains a curve and if we consider their restrictions to one side of this curve the union of
these parts form &" surface.

We shall need the following simple lemma:

Lemma 1. LetF : R? — R3 be aG” surface, where: > 0 and let us take an arbitrary,
but fixed pointp on F. Consider a coordinate system transformation where the origin
moves top and the direction of the-axis points towards the surface normal pt
The direction of ther-axis in the tangent plane is arbitrary, but fixed as wghd so
the y-axis is also determingd Then there is an ope c R? and an openU C R?
and ann-times continuously differentiablg (x, y) function such thap e Fn vV and
(x,y, f(x,y))=Fc Vwhen(x,y)eU.

Proof. This follows directly from the definition by the Implicit Function Theorem, see
also (Pegna and Wolter, 1992)0

3 We could consider more general domain®hbut this is irrelevant for this paper.
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Remark. Sometimes thisf (x, y) representation is called the Euler—Monge form of the
surfacerF.

Obviously if f(x, y) € C" then(x, y, f(x,y)) is aG" surface.

Similar statements are true for curves.

The lemma will be used in the proofs of the forthcoming Theorem 1. The significance
of the lemma is that it gives a common parametrization for all surfaces which are incident
to a given poinp and have a common tangent plane there in a neighbourhqmd of

3. Linkage Curve Theorem for C" surfaces
Now we give a proper generalization of the Linkage Curve TheorerGgfosurfaces.

Theorem 1. LetF and G be G” surfaces sharing a commag! curve denoted bR(z).
Suppose that there exists a family@f curvesk, (s) = E(¢, s) so that eaclk; is a surface
curve offF for s < 0, eachE, is a surface curve d& for s > 0, andE, (0) = R(¢) andE; (0)
is not parallel toR’(¢). ThenF andG have aG” continuous join.

Remark. A similar statement was proved in (Gregory, 1989). The main difference is that
here onlyG* continuity is required folR. This is not important if one wants to apply

the theorem for joining patches along parameter lines, but it can be important when the
common surface curve is not a parameter line, for example in the case of blending.

Proof of Theorem 1. We prove the theorem by induction far
If n =1 then we have to prove th& and G have aG?! join. This is trivial since in
every point ofR(¢) the normal vectors of botk andG are parallel to the cross-product

R(t) R'(H)

E( ()

Fig. 1. Join of surfaceB andG.
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of E/(0) andR’(r) which is not0 due to our conditions. Hence both surfa¢esnd G
share a common tangent plane alongd@edinkage curveR(r). According to (Pegna and
Wolter, 1992, p. 208), this implies the existence of & continuous Euler-Monge form
representing locally the union of the surfaéeandG.

Now suppose that the theorem holds/or 1 and we want to prove it for. Notice that
from the induction condition it follows tha andG have aG"~1 join.

Let po = R(7p) be an arbitrary, but fixed point. It is enough to prove &ilejoin in the
neighborhood of this point. Now fix our coordinate system so fhais the origin and
the z-axis is parallel to the surface normal there. khand y-axes are orthogonal to each
other and the-axis. There is a neighborhood p§ so thatF andG can be represented as
(x,y, f(x,y)) and(x, y, g(x, y)) using suitableC” functions. Let

R(t) = (a (1), (1), h(a(), B(1)))
and

Er(s) = (1 (5), ¥ (5), B (5), ¥ (5))),

whereh is equal tof or ¢ depending on the sign af(or in the case oR it can be either
of them). Herex andg areC?, ¢; (s) andy, (s) areC” functions.

From the induction condition it follows that all partial derivativesfoindg are equal
up to the(n — 1)th order:

" fa(2), B(2)) 9" g(a(2), (1))
axkaym—k - axkaym—k
If we can prove that theith order partial derivatives are equal too then the proof is

complete. Now let us use the condition that(s) € C". Having differentiateds; (s) n-
times with respect to the variabdeve obtain:

(k=0,...,m; m <n). (1)

n
" . _
> O (n) @’/ y"~/ + terms with lower order
J

s axJoyn—J
n n
g n\ i .
-y ——— () ¢/¥"/ —terms with lower orde& 0. (2)
. Oaxlay”_/ j
J:

As we have already remarked, the lower order terms are equal and so they cancel out from
the equation.

Form =n — 1, both sides of (1) are continuously differentiable functions.dAfter
differentiating with respect to the varialleve have:

" f : If s 9"g ,_ 0" s
3xk+13y”_k_l o 3xk3y”_k axk+layn—k—1 o axkayn—kﬂ -
(k=0,...,n—1). (3)

Now we haven + 1 equations for theth order partial derivatives by (2) and (3). More
precisely, let the unknowns be thdference®f the corresponding partial derivatives then
we have a system with— 1 equations. Theth equation is (2). The right side is 0, so if the
matrix of the system is non-singular then each unknown difference is zero, i.e., the partial
derivativesk =0, ..., n) are also equal to each other and we proved our assertion.
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From (3) and (2) the determinant is the following:

B a
B o
D= B a ,
bo b1 by b3z ... by,
whereb; = ('})gbj Y"—J . After some algebra one obtains:

D=3 (?)ww"‘f (DI pIa = @g — By
j=0

Therefore the determinant is equal to 0 if and onljfs) is tangential taR(z), but this
was excluded by the condition of Theorem 1o

4. Conclusion

In this paper a generalization of a theorem by Pegna and Wolter was described to extend
their idea for higher order smoothness between two adjacent surfaces.

It is obvious that the conclusion of Theorem 1 remains valid if we require the linkage
curve to be piecewise differentiable only. It is an interesting problem whether any kind of
further weakening of the related conditions is possible?
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