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This paper is concerned with the numerical examination of acoustically driven flows within the
inner ear on the basis of a computational model. For this purpose, a comprehensive system of
differential equations and boundary conditions is deduced, which takes, to a satisfactory extent, the
complexity of the main biophysical mechanisms of the cochlea into account. Beside an appropriate
representation of the fluid dynamics, also the biomechanical properties of the basilar membrane as
well as the internal amplification mechanism caused by the outer hair cell motility are considered in
order to get realistic estimates of the structure and magnitude of the mean flow field. The present
paper introduces a two-stage approach for the numerical evaluation of the solutions on the basis of
the finite element method. The first step deals with the calculation of the linear acoustic reaction
whereas the second step is associated with the determination of a first-order approximation of the
acoustic streaming field. It is shown that the results are essentially consistent with measurements
as well as analytical and experimental considerations. In addition, the numerical estimates of the
acoustically driven flows provide an instrument for a more profound discussion on their physiological
impact.
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1. Introduction

The term acoustic streaming is associated with the mean motions of a fluid or a gas which
are induced by an acoustic field. The relevance of acoustically driven flows and its potential
influence on the physiological processes of the cochlea are still an open issue. Up to now, a
direct examination of such mean flows within the cochlea has not yet been possible due to
the limited accessibility and the small dimensions of the liquid filled chambers. Furthermore,
it can be expected that the resultant velocities of the acoustic streaming field are relatively
small in comparison to the characteristic velocities of the sound field. This work yields

1350019-1

http://dx.doi.org/10.1142/S0218396X13500197


December 2, 2013 11:14 WSPC/S0218-396X 130-JCA 1350019

C. Gerstenberger & F.-E. Wolter

numerical estimates of the magnitudes as well as the structure of acoustic streaming within
the cochlea on the basis of a simulation process. The objective of this computational model is
the provision of a new instrument for a substantiated discussion on the physiological impact
of acoustically driven flows within the cochlea. In addition, a completely new approach for
simulating acoustic streaming within a fluid-structure coupled system like the inner ear is
proposed which might also be used in a wide range of other applications.

Two very important contributions to the subject of acoustic streaming within the inner
ear, which arise from the cochlear travelling waves, come from Hallauer1 and Lighthill.2

Hallauer as well as Lighthill examined the acoustic driven flows on the basis of theoretical
considerations. Both approaches use mathematical asymptotic and perturbation techniques
in order to get approximations of the nonlinear fluid motion within the cochlea. While
Lighthill focusses on the determination of an estimate of the potential velocities of acoustic
streaming, Hallauer also calculates the streamlines of the acoustically driven motions on
the basis of his mathematical model.

In contrast to the theoretical considerations from Lighthill and Hallauer, an experimental
examination of acoustic streaming can be traced back to Békésy.3 In his pioneering work
he performed inter alia studies on mechanical cochlear models. He observed that above and
below the cochlear partition two eddies arise if the mechanical model is stimulated by a
sinusoidal excitation. It turns out that this eddy-like motion can be associated with the
term acoustic streaming. A detailed description of these eddy-like mean flows was carried
out by Tonndorf.4

Acoustic streaming has already been studied in a lot of numerical simulation processes.
Different kinds of numerical approaches for the simulation of acoustic streaming were, for
example, reviewed by Boluriaan and Morris.5 But up to now, it has not yet succeeded to
establish an adequate method for the numerical simulation of acoustic streaming within
biophysical systems like the cochlea. The primary reason for this lies in the fact that the
velocity field of the fluid is mainly influenced by the interactions with its adjacent structures.

In this work, a well-proven numerical method is adapted that was successfully imple-
mented by Köster,6 who studied the structure of acoustic streaming caused by piezoelectri-
cally driven microfluidic bio-chips. Köster used a standard perturbation technique in order
to split the nonlinear acoustic streaming problem into two linear subproblems. His compu-
tational model also includes a more precise treatment of the acoustic radiator, as originally
suggested by Bradley.7

To investigate the influence of acoustically driven flows in the inner ear, an appropriate
computational model was developed, which has been studied in a simulation process. In
contrast to the work from Köster,6 this computational model consists not only of a fluid-
domain but also of structural components that have a significant influence on the fluid. A
schematic layout of the model is shown in Fig. 1. As one can see, the model introduced
in this paper can also be divided into a first-order system and a second-order system. The
first-order system describes the linear acoustics within the fluid-domain in combination
with the mutual interactions of the cochlear structures, such as the basilar membrane,
the oval window and the round window. The oval window serves as an acoustic radiator
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Fig. 1. Schematic layout of the computational model used for simulation of acoustically driven flows within
the cochlea. On the basis of a perturbation technique, the system is separated into first- and a second-order
system. The first-order system describes the linear acoustic field of the fluid as well as its interactions with
the structures, such as the oval window, the round window and the basilar membrane. Furthermore, the
motility of the outer hair cells is taken into account which results in additional forces acting on the basilar
membrane. The first-order system provides results that can be used by the second-order system in order to
calculate an approximation of acoustic streaming.

due to the direct contact with the stapes of the middle ear. The round window is covered
by a membrane that allows the fluid to move arbitrarily to a certain degree. The basilar
membrane can also be brought into motion due to the difference of the pressure above and
below the cochlear partition. In turn, such a displacement of the basilar membrane also
has an influence on the velocity field of its adjacent fluid. Furthermore, an additional force
term that acts on the basilar membrane has also to be taken into account for the first-order
subproblem in order to represent the motility of the outer hair cells. At a second stage the
acoustically driven flows can be determined on the basis of the results of this first-order
system.

2. Modeling

In order to obtain an implementable model of the cochlea some simplifications and assump-
tions are made while maintaining fundamental aspects to get a valid representation for
estimating the occurrence and structure of acoustically driven flows within the fluid-filled
chambers of the inner ear. The most substantial simplification of the model presented here is
that the dynamics of the cochlea are simulated on the basis of a simplified two-dimensional
domain as illustrated in Fig. 2. Three-dimensional models of the cochlea were, for instance,
realized by Givelberg and Bunn8 who used the immersed boundary method, as well as by
Cheng et al.9 and Böhnke and Arnold10 who performed finite element simulations. In con-
trast to these computationally intensive approaches, Lim and Steele11 introduced a signifi-
cantly faster three-dimensional model that is based on the WKB-method and which takes
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Fig. 2. The two-dimensional shape of the uncoiled human cochlea model. The heights of the scala vestibuli
and scala tympani are taken from Wysocki.13 The scala vestibuli and the scala tympani constitute the
fluid domain Ω and these chambers are bordered by the rigid boundary Γr, the oval window Γow and the
round window Γrw. Both ducts are separated by the cochlear partition Γbm which serves as a simplified
representation of the basilar membrane in combination with the organ of corti. For reasons of simplicity
the scala media is not explicitly taken into account by the model. The oval window consists of the stapes
which act as an acoustic radiator in order to stimulate the cochlear system. The piston-like motions of the
stapes can be represented by corresponding displacements of the associated boundary. In contrast, the round
window is closed by a flexible membrane which allows, to a certain extent, a free motion of the fluid.

the nonlinear behavior as well as the feed forward mechanism of the basilar membrane into
account. This approach was developed further by Yoon et al.12 in order to achieve a better
correlation with in vivo measurements. However, the occurrence of acoustically driven flows
could not be investigated by these models, due to simplifying assumptions made by the
modeling process. Even though the results presented here are based on a two-dimensional
domain, this work provides a basic concept for analyzing acoustic streaming also in a three-
dimensional reference system.

2.1. Fluid dynamics

2.1.1. Conservation equations

The dynamics of the perilymph are described on the basis of different conservation princi-
ples. The conservation of mass can be written as

∂ρ

∂t
= −div(ρv), (1)

where ρ(x, t) denotes the scalar density field, v(x, t) the vectorial velocity field and t the
time-parameter. The spatial coordinates x = (x, y) consist of the longitudinal component
x and the vertical component y. The conservation of linear momentum can be expressed in
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terms of the stress tensor σ as

ρ

(
∂v

∂t
+ (grad v) · v

)
= div σ. (2)

It should be noted that both conservation equations are formulated on the basis of the
Eulerian specification of motion. As a result of the conservation of angular momentum the
stress tensor σ must be symmetric.14

2.1.2. Constitutive relations

In order to identify a unique solution of these different field functions the system of equa-
tions must be supplemented by further relations that are usually referred to as constitutive
relations. It turned out that the dynamics of a variety of different fluids and gases for a
wide range of applications can be modeled very well if a linear relationship between the
deviatoric stress and the strain rate is assumed. In conformity with some basic assumptions
of material theory, the stress tensor can be expressed as

σ = −pI +
(

ζ − 2
3
η

)
tr(D)I + 2ηD, (3)

where D is the tensor that quantifies the strain rate.15,16,a The coefficients η and ζ can be
associated with the shear viscosity and the bulk viscosity of the fluid.

In acoustics, the deviations of the pressure and the density from its respective ambient
values can be approximated by the linear relationship

p − p(0) =
∂p

∂ρ

∣∣∣∣
ρ(0)

(ρ − ρ(0)) = c0
2(ρ − ρ(0)), (4)

where the constant of proportionality can be identified as the square of the so-called small
signal sound speed c0. Since the exact specifications of the perilymph are not known, the
properties of the fluid are assumed to be similar to water at room temperature (cf. Table 1).

2.1.3. Boundary conditions

At the boundaries it is assumed that the no-slip condition can be applied, which means
that the velocity of the viscous perilymph is equal to the velocity of the boundaries. At the
rigid boundaries, this condition can simply be stated as

v(x, t) = 0 for all x ∈ Γr. (5)

aIn terms of the velocity field v, the strain rate can be written as D = 1
2

`
grad v + (grad v)T

´
.15
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Table 1. Physical constants that are needed for the
simulation of the fluid dynamics. The values are based on
the physical properties of water at room temperature.

Symbol Value Name Unit

ρ(0) 998.0 Ambient density kg/m3

c0 1484.0 Small signal sound speed m/s

ζ 3.0 × 10−3 Bulk viscosity Ns/m2

η 1.0 × 10−3 Shear viscosity Ns/m2

But in the case of the moving boundaries (oval window and basilar membrane), the no-slip
condition can be evaluated to

v(x0 + ζ(x0, t), t) =
∂ζ(x0, t)

∂t
, (6)

where ζ(x0, t) describes the displacement of the boundary from its resting position x0.
For the purpose of simplification explicit changes of the domain, caused by the displace-

ments of the moving boundaries, are neglected. This simplification is reasonable and possi-
ble, since the oscillations of the boundaries are substantially smaller than the proportions
of the cochlea model. Equation (6) constitutes a Lagrangian specification of the velocity at
the boundary. For the adaption of the boundary condition to an Eulerian specification, a
vectorial Taylor expansion of the left-hand side can be performed to obtain

v(x0, t) =
∂ζ

∂t
−
(

grad v(x0, t)
)
· ζ − · · · . (7)

Furthermore, it is assumed that no external forces act on the fluid across the outer bound-
aries. In terms of the stress tensor σ, this condition can be written as

σ(x, t) · n(x, t) = 0 for all x ∈ Γ, (8)

where n indicates the (unit) outward normal vector with respect to the boundary of the
fluid volume. At the beginning of the simulation process t0, it is presumed that the system
is at rest.

2.1.4. Perturbation expansion

Since the acoustically driven flows are dominated by viscous forces (and not by inertial
forces), the streaming can be characterized by a low Reynolds number. In the case of low
Reynolds numbers the use of a perturbation technique has advantages over the fully non-
linear approach, since the perturbation approach represents the nonlinear problem by a
set of linear subproblems. Normally, it is sufficient to consider only the first two linear
subproblems. This perturbation method has already been successfully adopted by several
authors.6,7,17
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For the implementation of the perturbation approach, the unknown functions are rep-
resented by perturbation expansions in the small Mach number ε � 1. The Taylor series of
the velocity-field is, for instance, given by

v(x, t, ε) = v(x, t, ε)|ε=0︸ ︷︷ ︸
=:v(0)

+
∂v(x, t, ε)

∂ε

∣∣∣∣
ε=0

ε︸ ︷︷ ︸
=:v(1)

+
∂2v(x, t, ε)

∂ε2

∣∣∣∣
ε=0

ε2

︸ ︷︷ ︸
=:v(2)

+O(ε3). (9)

Similarly, the other field-functions (pressure, density, etc.) can also be represented by such a
perturbation expansion in ε. This approach is, of course, only applicable under the assump-
tion that the perturbed problem arises smoothly from an initial problem through the con-
tinuous variation of the parameter ε.

This procedure is based on the principle that terms of different order are independent
from each other.18 This means that, after substituting the respective perturbation expan-
sions for the unknown functions, each equation can be separated into a set of equations,
whereby each relation consists only of terms of the same order.

Lighthill17 pointed out that this separation of different terms should primarily depend
on their numerical dimension and not on their mathematical order. He concluded that
the resultant second-order system, which is used for the evaluation of acoustic streaming,
neglects a fourth-order quantity that would take inertial effects of the mean flows into
account. These inertial effects become more and more significant for applications that are
characterized by a high Reynolds number. In these cases, the successive perturbation method
would probably fail to approximate the mean flows correctly.

In steady state, the first-order functions describe the harmonic excess values of the
fundamental acoustic field with the angular frequency ω, provided that the system is stim-
ulated by a sinusoidal excitation of the same frequency. Then, the second-order functions
can be associated with the second-order harmonic field of double the frequency as well as a
second-order steady streaming.6,7 In this work, the main focus lies on the determination of
this secondary steady flow field, since it constitutes a first-order approximation of acoustic
streaming. Any higher-order mean flows are neglected, due to the rapid decrease of their
magnitudes.

2.2. The first-order system

2.2.1. The acoustic subproblem

After substituting the perturbation expansions for the velocity-, pressure- and density-
functions and considering only the first-order terms, the acoustic subproblem can be
expressed as

1
c0

2

∂p(1)

∂t
= −ρ(0) div v(1), (10)

ρ(0) ∂v(1)

∂t
= −grad p(1) +

(
ζ +

η

3

)
grad div v(1) + η ∆ v(1). (11)
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According to Eq. (7), the first-order approximation of the Eulerian specification of the no-
slip condition can be evaluated by taking only the first-order term into account. Therefore,
the first-order velocity components at the basilar membrane and at the oval window can
be written in terms of the displacements of the cochlear partition ξ and the oval window
ξow as

v(1)(x, t) =
[

0
∂

∂t
ξ(x, t)

]T

for all x ∈ Γbm, (12)

v(1)(x, t) =
[

∂

∂t
ξow(x, t) 0

]T

for all x ∈ Γow. (13)

2.2.2. The passive mechanics of the cochlear partition

The interactions between the fluid and the basilar membrane have a significant influence on
the sound field within the inner ear. Therefore, it is essential to take the mechanical behavior
of the cochlear partition into account. In this context, an approach, developed by Mammano
and Nobili,19,20 is adapted that has proven to be a well-functioning one-dimensional model
for describing the deflections of the basilar membrane as cause of the pressure differences
across the partition.

Their model is based on the idea that the dynamic reaction of the basilar membrane
can, in principle, be described by an array of oscillators, which are characterized by different
physical properties. Figure 3 shows a schematic illustration of such an array of oscillators.
Each oscillator consists of a mass which can be set into vibration through a spring. The
springs are characterized by its respective stiffness. Furthermore each spring-mass system
is attached to a damper which tends to reduce the oscillation.

But in contrast to such a discrete arrangement of individual oscillators, the basilar
membrane is rather modeled as a continuum represented by the one-dimensional cochlear
partition as shown in Fig. 2. According to Mammano and Nobili,19 such a damped oscillation

Fig. 3. The mechanical properties of the basilar membrane can be represented by an array of damped oscilla-
tors. Each oscillator is characterized by its specific mass m, viscosity h and stiffness k. Vertical displacements
ξ(x) are caused by external forces.
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of a continuous one-dimensional system that describes the vertical displacement of the
basilar membrane ξ(x, t) under the action of external forces f(x, t), can be represented by
the differential equation

m(x)
∂2ξ(x, t)

∂t2
+ h(x)

∂ξ(x, t)
∂t

+ k(x)ξ(x, t) = fp+(x, t) − fp−(x, t) + ϑ(x, t) (14)

if it is assumed that all forces depend linearly on the displacement of the basilar membrane.
The coefficient functions describe different physical properties of the basilar membrane.
An adequate choice of these parameter functions is not easy, because the structure of the
organ of corti is not homogeneous and the material properties are difficult to determine.
Furthermore, it is not clear to what extent certain characteristics may be relevant for the
oscillation process. However, in order to ensure that the coefficients range within the physical
limits, they are estimated on the basis of some theoretical and dimensional considerations
having regard to the biophysical structure of the organ of corti (cf. Fig. 4).

The right-hand side of Eq. (14) considers external forces acting on the basilar membrane.
As a result of the fluid pressure above and below the basilar membrane, two hydrodynamic
forces are acting on the cochlear partition. Since the pressure acts — at a specific location
x — on the whole width wbm(x) of the basilar membrane, the two components of the
hydrodynamic force per unit length may be written as

fp±(x, t) =
1
2
wbm(x) p(1)(x, t)

∣∣
x=(x,±0)

. (15)

Due to the assignment of two different pressure values at the location x = (x, 0) (caused by
the one-dimensional representation of the basilar membrane), the second components of the
coordinates are also labeled by a sign to indicate the location. Thus, a positive (negative)

Fig. 4. Cross-section of a mammalian organ of corti: (1) Inner hair cell, (2) outer hair cells, (3) tectorial
membrane, (4) stereocilia, (5) basilar membrane, (6) tunnel of corti, (7) cells of deiters and (8) Nerve fibres.
The arrows indicate the principal motions of the organ of corti. The pressure difference between the upper
and lower chamber causes upward and downward movements of the basilar membrane. Furthermore, the
tectorial membrane moves along the reticular laminar due to their different pivots.
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sign refers to the location that belongs to the upper (lower) duct. Actually, due to the
anatomical structure and the lateral fixation of a basilar membrane segment (cf. Fig. 4),
the pressure should not be accumulated uniformly along the radial width. This issue is taken
into account (in a simplified manner) by introducing an effective width which is assumed
to be half of the geometric width.

The force ϑ is associated to the internal amplification mechanism provided by the outer
hair cells.

2.2.3. Outer hair cell motility

The vertical motions of the basilar membrane are accompanied with a shearing displacement
of the tectorial membrane in relation to the reticular lamina. This kind of motion is the
result of different pivots of the tectorial membrane and the reticular lamina around which
they rotate.19 The stereocilia of the outer hair cells are deflected by the shearing flow of the
endolymph and due to a partial contact of the stereocilia with the bottom of the tectorial
membrane. The deflection of these hair bundles causes in turn a change of the cell potential
due to a mechanoelectrical transduction mechanism. If the stereocilia are deflected in the
direction of their tallest outgrowth, the outer hair cell will be depolarized. Otherwise, a
hyperpolarization is caused by a deflection in the opposite direction. As a result of electrical
stimulation the outer hair cells are capable of changing length. Therefore, the length change
is often referred to as electromotility.

Because this work is not primarily concerned with an exact representation of the complex
processes of the outer hair cell motility, a simplified stimulus-response model is adapted as
it was suggested by Nobili et al.20 in order to take the feedback from the outer hair cells
into account. Therefore, it is assumed that the relationship between the deflection ζ of the
hair bundles and the force ϑ can be represented by

ϑ(x, ζ(x, t)) = α(x) sig(β(x)ζ(x, t)), (16)

where sig is a sigmoid functionb and α(x) and β(x) are parameters that depend on the
specific internal processes involved in the outer hair cell motility. For small deflections of
the hair-bundles these saturation-effects can be neglected and Eq. (16) can be linearly
approximated by

ϑ(x, ζ(x, t)) ≈ α(x)β(x)ζ(x, t). (17)

Since this approximation neglects the nonlinear saturation effects that limit the outer hair
cell driven force, relation (17) only holds true for small deflections of the hair-bundles.

bThe sigmoid function used in this work is defined as sig(x) := 1 − 2
e2x+1

. The sigmoid function is chosen

in such a way that its values ranges from −1 to 1 and that its slope at the origin is equal to 1.
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The specification of the constant of proportionality α(x)β(x) is based on some phenomeno-
logical considerations that are targeted on the realization of the outer hair cell driven
amplification mechanism.19–22

In order to calculate the force-feedback the deflection of the hair-bundles have to be
determined on the basis of the vertical displacement of the basilar membrane. It is assumed
that the motions of the tectorial membrane relative to the reticular laminar can be repre-
sented as a separate oscillator and that this subsystem is mainly stimulated by the vertical
acceleration of the basilar membrane displacements. In terms of a linear differential equa-
tion and according to Mammano and Nobili19,20 the deflection ζ of the hair bundles can
therefore be written as

mtm(x)
∂2ζ(x, t)

∂t2
+ htm(x)

∂ζ(x, t)
∂t

+ ktm(x)ζ(x, t) = gtm(x)mtm(x)
∂2ξ(x, t)

∂t2
, (18)

where mtm(x), htm(x) and ktm(x) are coefficient functions used for constituting the spe-
cific inertia, damping and stiffness of the oscillating subsystem. These coefficient functions
are specified on the basis of some dimensional and theoretical considerations. Due to the
different orientation of the subsystem and due to some internal losses of the coupling, the
external force acting on the subsystem is only a fraction of the vertical acceleration driven
forces. This effect was taken into account by the additional gain function gtm(x). Accord-
ing to Nobili et al.,20 it is assumed that the gain function is constant along the cochlear
partition and that the effective force acting on the subsystem is only a tenth of the vertical
inertial force.

On the basis of these assumptions, it can be shown that the outer hair cell force ϑ acts,
in principle, as a negative damping term (cf. Mammano and Nobili19 and Nobili et al.20). In
order to guarantee the stability of the system, the amount of negative damping caused by
the outer hair cells should not exceed the amount of positional damping described by the
second term on the left-hand side of Eq. (14). Therefore, it makes sense to use an additional
control parameter λ(x) (hereinafter referred to as outer hair cell activity parameter) that
specifies the degree of damping cancellation. If λ is equal to one, the total positional viscosity
can potentially be canceled by the outer hair cell driven force. In contrast, no additional
outer hair cell force will be applied if λ is equal to zero.

2.3. The second-order system

2.3.1. The acoustic streaming subproblem

The acoustic streaming subproblem is established on the basis of the second-order system
that results from the perturbation approach as described in Sec. 2.1.4. In steady state, the
second-order equations are associated with the second harmonic fields in combination with
a steady flow field. While the determination of the second harmonic field is of no interest to
this work, the evaluation of the steady flow field yields a first-order approximation of acoustic
streaming. In order to extract the steady flow field (hereinafter indicated by the superscript
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(dc)) from the second-order system, the operator 〈·〉 that determines the temporal average
of time-dependent functions can be applied. The mean of the second-order equation that is
associated with the balance-of-mass principle 1 can be written as

ρ(0) div v(dc) = m̃, (19)

where the term m̃ corresponds with a virtual mass-source. This source distribution is caused
by the first-order acoustic subproblem and describes the supply of mass.7 In terms of the
first-order fields, the mass-source can be evaluated to

m̃ = − 1
c0

2
div〈p(1)v(1)〉. (20)

Similarly, the steady components of the secondary flow fields must fulfill the time-averaged
second-order version of the balance-of-momentum principle 2, which is given by

grad p(dc) −
(
ζ +

η

3

)
grad div v(dc) − η∆v(dc) = f̃ , (21)

where f̃ denotes a virtual force-source distribution. The force-source acts as an external
volume-force and depends on the acoustic field. By using first-order terms, the force-source
distribution can be expressed as

f̃ = − 1
c0

2

〈
p(1) ∂v(1)

∂t

〉
− ρ(0)〈(grad v(1))v(1)〉. (22)

By substituting the respective perturbation expansion for the field variables of Eq. (7)
and by applying the mean-operator, the time-averaged second-order boundary condition
can be written as

v(dc) = −〈(grad v(1))ζ(1)〉. (23)

A more detailed discussion about this second system with respect to its physical meaning
and its connection to acoustic streaming can, for instance, be found in the paper from
Bradley.7

3. Implementation

3.1. Meshing

In the context of this work, the mesh generation is based on specific local refinements of a
coarse mesh in order to minimize potential errors between the exact solution and its numer-
ical approximation on the one hand and on the other to limit the computational effort of the
simulation process. Therefore, an initial marking-routine is used which specifies for each ele-
ment the number of refinements that should be performed by the refinement procedure. The
typical traveling wave motion of the basilar membrane displacement (as described in detail
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in Sec. 4.1.1) is a result of its interactions with the adjacent fluid. According to Olson23,24

who measured the fluid motion close to the basilar membrane with pressure gradient mea-
surements, the displacement pattern of the basilar membrane is reflected in the fluid to
a certain extent. The significant increase of the amplitude of the traveling wave (until the
maximum is reached) in combination with a substantial decrease of its wave length indicates
that the fluctuations of the field variables increase along the cochlear partition up to the
point where the traveling wave dissipates.

Another important aspect (as discussed in detail in Sec. 4.1.2) is that the field variables
within the thin Stokes boundary layer next to the basilar membrane should be accurately
approximated by the finite element space. According to Lighthill,17 the thickness of this
Stokes boundary layer can be estimated to range from about 10µm to 400µm in dependence
of the stimulation frequency of audible sound.

On the basis of these heuristic arguments, the number of refinements of the elements
next to the basilar membrane is gradually increased along the partition until a specific
location is reached. This location is specified by the expected decay of the traveling wave,
which can be estimated by using the frequency-position map from Greenwood25 as described
in Sec. 4.1.1.

In addition to the fluid domain, also the basilar membrane and its interactions with the
fluid have to be taken into account by the numerical implementation. As already described
above, the basilar membrane should be represented by a one-dimensional line between the
fluid-filled chambers. The additional one-dimensional mesh is constructed in such a way
that the individual line segments coincide with the corresponding boundary edges of the
fluid domain. This identical arrangement of the meshes with respect to the location and
width of each line segment is not mandatory, but it significantly simplifies the numerical
realization of the fluid structure interaction.

Fig. 5. The underlying mesh, used for the finite element analysis, is generated on the basis of an heuristic
approach. The mesh is characterized by a gradual increase of its density along the basilar membrane until a
point is reached where the traveling wave will probably be dissipated.
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3.2. Spatial discretization

3.2.1. The first-order system

The finite element method is based on the variational formulation of the boundary value
problem. The derivation of the variational formulation can be divided into three steps. In the
first step, the partial differential equations of the boundary value problem must be multiplied
by test-functions which are in agreement with the respective boundary-conditions. After
that, the resultant statements must be integrated over the domain of interest. Finally, the
requirements concerning the differentiability of individual field variables should, if possible,
be weakened by applying Green’s first identity.

Acoustic Subproblem: The weak form of the first-order equation of the conservation of
momentum is given by

ρ(0)
∫

Ω
v̄i

∂v
(1)
i

∂t
dx +

∫
Ω

∂v̄i

∂xj

σ(1)
ij dx −

∫
Γ

v̄iσ
(1)
ij nj dx = 0, (24)

where the line above a variable indicates the test-functions. Due to the boundary condi-
tion (8), the boundary integral vanishes. According to the specification of the stress ten-
sor (3), the second integral can be expanded to

∫
Ω

∂v̄i

∂xj
σ(1)

ij dx = η

∫
Ω

∂v̄i

∂xj

(
∂v

(1)
i

∂xj
+

∂v
(1)
i

∂xi

)
dx

+
(

ζ − 2
3
η

)∫
Ω

δij
∂v̄i

∂xj

∂v
(1)
k

∂xk
dx −

∫
Ω

δij
∂v̄i

∂xj
p(1) dx. (25)

In this work, the two components of the velocity field as well as its first time derivatives are
represented by quadratic finite element functions QΩ

i which are based on the well-known
Lagrange interpolation polynomials. Therefore, the individual velocity components can be
approximated by

v(1)
1 ≈ v̂(1)

1 ·QΩ = v̂(1)
1,iQ

Ω
i , v(1)

2 ≈ v̂(1)
2 ·QΩ = v̂(1)

2,iQ
Ω
i ,

v̇(1)
1 ≈ ˙̂v(1)

1 ·QΩ = ˙̂v(1)
1,i QΩ

i , v̇(1)
2 ≈ ˙̂v(1)

2 ·QΩ = ˙̂v(1)
2,i QΩ

i ,
(26)

where the hat-symbol above a variable refers to a nodal vector. In order to ensure the stabil-
ity of the mixed formulation, the so-called Ladyzhenskaya–Babuska–Brezzi (LBB) condition
has to be fulfilled by the finite element spaces. With respect to the interpolation functions
of the Lagrange family, it was shown that the polynomial degree of the basis functions,
used to represent the pressure field, should be at least one order lower than the respective
basis functions of the velocity components.14 Therefore, the scalar pressure field as well as
its time-derivative are represented by linear interpolation polynomials LΩ

i belonging to the
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Lagrange family:

p(1) ≈ p̂(1) · LΩ = p̂(1)
i LΩ

i , ṗ(1) ≈ ˙̂p(1) · LΩ = ˙̂p(1)
i LΩ

i . (27)

The variational formulation can now be transformed into its semi-discretized counterpart by
substituting the finite element approximations for the respective field function. In addition,
the test functions can also be replaced by individual basis functions. Having regard only
to the terms that make a contribution to the first velocity component, the semi-discretized
formulation can be written as[

ρ(0)
∫

Ω
QΩ

i QΩ
j dx

]
˙̂v(1)
1,j +

[∫
Ω

∂QΩ
i

∂x1
LΩ

j dx

]
p̂(1)

j

+


(ζ +

4
3
η

)∫
Ω

∂QΩ
i

∂x1

∂QΩ
j

∂x1
dx + η

∫
Ω

∂QΩ
i

∂x2

∂QΩ
j

∂x2
dx


 v̂(1)

1,j

+


(ζ − 2

3
η

)∫
Ω

∂QΩ
i

∂x1

∂QΩ
j

∂x2
dx + η

∫
Ω

∂QΩ
i

∂x2

∂QΩ
j

∂x1
dx


 v̂(1)

2,j = 0. (28)

For reasons of convenience, this system of equations can also be expressed in terms of a
matrix-vector-notation as

H̃v1v1 ˙̂v(1)
1 + K̃v1v1v̂(1)

1 + K̃v1v2v̂(1)
2 + K̃v1pp̂(1) = 0. (29)

It must be noted that, up to now, the discretization process of the variational formulation
does not ensure that the solution is in conformity with the respective boundary conditions.
The Dirichlet condition can now be taken into account by modifying all rows of the matrices
that are associated with a Dirichlet node. If I denotes the set that contains all Dirichlet
nodes with respect to the first velocity component and if Iow is a subset of I that includes
only the nodes at the oval window, a modified version of the matrix K̃v1v1 as well as a new
right-hand vector can be specified as

Kv1v1

ij =


δij if i ∈ I,

K̃v1v1

ij otherwise ,
Fv1

i =




∂ξow(x)
∂t

if i ∈ Iow,

0 otherwise .
(30)

with δij being the Kronecker delta operator. The final semi-discretized formulation that also
takes the boundary condition into account can now be expressed as

Hv1v1 ˙̂v(1)
1 + Kv1v1v̂(1)

1 + Kv1v2v̂(1)
2 + Kv1pp̂(1) = Fv1, (31)

where the matrices Hv1v1, Kv1v2 and Kv1p arises from erasing all entries of the preliminary
matrices that belong to a Dirichlet row i ∈ I. In a similar way, the discretization process of
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the first-order Eq. (11) also induces a second system of equation which can be represented as

Hv2v2 ˙̂v(1)
2 + Kv2v1v̂(1)

1 + Kv2v2v̂(1)
2 + Kv2pp̂(1) + Hv2ξ ˙̂

ξ = 0. (32)

In contrast to the first system, the second system is supplemented by the matrix Hv2ξ, which
is needed to specify the Dirichlet condition at the cochlear partition in dependence of the
first time-derivative of the basilar membrane displacement represented by the nodal vector
˙̂
ξ. This is possible because each boundary node at the top or the bottom of the cochlear
partition that belongs to the fluid domain can be directly linked to a corresponding node
on the basilar membrane due to the specific construction of the mesh.

Besides the discretized first-order equation that originates from the conservation of linear
momentum, the first-order equation that represents the mass balance has also to be taken
into account in order to describe the acoustic reaction within the fluid domain. On the
basis of its weak formulation, the semi-discretized formulation of the mass balance can be
evaluated to

Hpp ˙̂p(1) + Kpv1v̂(1)
1 + Kpv2v̂(1)

2 = 0. (33)

Dynamics of the Basilar Membrane: According to the differential equation (14), the
semi-discretized system that simulates the displacement of the basilar membrane can be
determined to

Mξξ¨̂ξ + Hξξ ˙̂
ξ + Kξξξ̂ + Kξpp̂(1) + Kξζζ̂ = 0. (34)

The internal physical properties of the basilar membrane are described by the mass matrix
Mξξ, the damping matrix Hξξ and the stiffness matrix Kξξ. The displacement is caused
by the pressure difference across cochlear partition. This external pressure load can be
calculated with the help of the matrix Kξp. Finally, the force exerted by outer hair cell
motility can evaluated by using the matrix Kξζ.

As described in Sec. 2.2.3, the deflections of the hair-bundles are modeled as an additional
array of sub-oscillators. The stiffness, the damping and the mass properties are reflected
in the matrices Kζζ , Hζζ and Mζζ . This sub-oscillator is stimulated by the displacement
of the basilar membrane and the resultant coupling is realized by the matrix Mζξ. By the
use of these matrices, the variational formulation of Eq. (18) can be transformed into the
ordinary differential equation

Mζζ ¨̂ζ + Hζζ ˙̂
ζ + Kζζζ̂ + Mζξ¨̂ξ = 0. (35)

The dynamics of the basilar membrane are calculated on the basis of one-dimensional linear
interpolation functions that belong to the Lagrange family.

3.2.2. Multiphysical coupling

In principle, two different approaches for the numerical implementation of a multiphysical
problem can be distinguished. The first approach for simulating multiple processes involves
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the consideration of the coupled processes as one monolithic system of equations. The major
drawback of this procedure is that the resultant system of equations may become quite large
and its associated matrix is potentially badly conditioned. In contrast, the second approach
is based on separate sub-routines that are specialized in the numerical computation of the
different physical phenomena that are involved. In this case, the coupling is realized by the
transfer of relevant data that can be taken into account by specific boundary conditions,
load terms, geometric shape or constitutive relations.14,26

In this work, the multiphysical problem is realized by a monolithic system of equations. It
can be assumed that a partitioned realization of the coupling involves a substantial compu-
tational effort that is probably needed by the application of sub-iterations due to the strong
interdependence between the fluid, the basilar membrane and the outer hair cell motility.
Therefore, it cannot be expected that the partitioned implementation has significant advan-
tages with respect to the computational effort over a monolithic realization. Furthermore,
the modular design is accompanied with a substantial increase of the code complexity, due to
the additional implementation of adequate interfaces, data transfer protocols, finite element
interpolations and the monitoring of the sub-iteration processes.

According to Eqs. (31)–(35), the fully coupled monolithic system of the first-order acous-
tic subproblem can be represented as

Mü + Hu̇ + Ku = F (36)

which constitutes a system of second-order linear ordinary differential equations. The
nodal vector u combines the individual nodal vectors of the fluid velocity, fluid pressure,
basilar membrane displacement and hair-bundle deflection and this overall vector can be
written as

u = [v̂(1)
1 v̂(1)

2 p̂(1)ξ̂ζ̂]T . (37)

Due to the similarity of Eq. (36) to equations of motions where the vector u is usu-
ally identified with the displacement of the motion, the matrices M, H and K are often
referred to as the mass matrix, the damping matrix and the stiffness matrix. By using the
sub-matrices of the individual equations as introduced above, the stiffness matrix can be
given as

K =




Kv1v1 Kv1v2 Kv1p 0 0

Kv2v1 Kv2v2 Kv2p 0 0

Kpv1 Kpv2 0 0 0

0 0 Kξp Kξξ Kξζ

0 0 0 0 Kζζ




. (38)
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The discretized damping matrix of the first-order subproblem can be represented as

H =




Hv1v1 0 0 0 0

0 Hv2v2 0 Hv2ξ 0

0 0 Hpp 0 0

0 0 0 Hξξ 0

0 0 0 0 Hζζ




. (39)

Finally, the overall mass matrix can be determined to

M =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 Mξξ 0

0 0 0 Mζξ Mζζ




. (40)

By the monolithic matrix representation, the interdependencies between different field vari-
ables are easily recognizable by the sub-matrices that are not located on the main diagonal.

The right-hand side of the first-order semi-discretized formulation consists only of entries
belonging to the first velocity components that are associated with the displacement of the
oval window. Therefore, the load vector can be written as

F = [Fv1 0 0 0 0]T . (41)

3.2.3. The second-order system

The spatial discretization of the acoustic streaming subproblem, which consists of the differ-
ential equations (19) and (21), can be performed on the basis of their respective variational
formulation. The resultant time-independent system of equations can be written in terms
of a mixed formulation as


Gv1v1 Gv1v2 Gv1p

Gv2v1 Gv2v2 Gv2p

Gpv1 Gpv2 Gpp






v̂(dc)
1

v̂(dc)
2

p̂(dc)


 =




Sv1

Sv2

Sp


 . (42)

The force-source distribution as well as the mass-source distribution are taken into account
by the load vector at the right-hand side.

3.3. Temporal discretization

This work uses an approach that was originally suggested by Houbolt.27 The approxima-
tion technique from Houbolt is a second-order method, which means that the error per
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time-step is of the order ∆t2. Furthermore, the scheme is numerically stable since it is
an implicit approach.28 The integration scheme from Houbolt uses the following backward
finite difference approximations for the first and second time-derivative:

u̇t+∆t = − 1
6∆t

(
2ut−2∆t − 9ut−∆t + 18ut − 11ut+∆t

)
, (43)

üt+∆t = − 1
∆t2
(
ut−2∆t − 4ut−∆t + 5ut − 2ut+∆t

)
. (44)

The semi-discretized formulation of the first-order problem at time t + ∆t can be
written as

Müt+∆t + Hu̇t+∆t + Kut+∆t = Ft+∆t. (45)

By substituting the approximations (43) and (44) for the velocity-like vector u̇t+∆t and the
acceleration-like vector üt+∆t, the fully discretized first-order subproblem can be represented
by the simple linear system of equations

Aut+∆t = b. (46)

In this context, the matrix A can be evaluated as

A =
2

∆t2
M +

11
6∆t

H + K. (47)

As it can be seen, it is sufficient to determine the matrix A only once at the beginning of
the numerical time integration process due to the stationary character of the mass matrix
M, the damping matrix H and the stiffness matrix K. The load term b can be calculated as

b =
(

1
∆t2

M +
1

3∆t
H
)

ut−2∆t −
(

4
∆t2

M +
3

2∆t
H
)

ut−∆t

+
(

5
∆t2

M +
3

∆t
H
)

ut + Ft+∆t. (48)

In contrast to the stationary matrix on the left-hand side of Eq. (46), the load term b has
to be updated at each time-step due to the dependency on the time-varying load vector
Ft+∆t (which takes account of the predefined displacements of the oval window) and the
inclusion of the state vectors u at the preceding three time-steps.

3.4. Solver

The discretization process of the first-order system results in a sequence of linear systems of
equations (cf. (46)). Under the assumption of a constant time-step, the linear systems are
characterized by a constant, large, sparse and nonsymmetric matrix as well as a time-varying
right-hand side vector. In order to get a numerical solution of each system, the generalized
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minimal residual method (GMRES) is used due to its applicability for nonsymmetric sys-
tems. The iterative GMRES approach was originally developed by Saad and Schultz29 and
it is based on a projection method, which approximates the solution within the so-called
Krylov subspace.

The acoustically driven flow field can be achieved by solving the symmetric system of
equations as described in Sec. 3.2.3. Although the symmetry of the matrix allows the usage
of more efficient methods (e.g. the Lanczos algorithm), the GMRES method is also used for
solving the mean second-order system.

The speed of convergence of an iterative solver (like GMRES) can be significantly
enhanced by transforming the linear system of equations into a better conditioned sys-
tem. In this work, this preconditioning is performed by the use of the incomplete LU
decomposition.30

4. Results

In this section, the numerical results of the computational model, introduced in this work,
are presented. In order to ensure the correct functionality of the model, the numerical results
are compared to experimental studies, measurements and analytical estimates.

4.1. Harmonic stimulation of the first-order system

The accuracy of the first-order system is crucial for the correctness of the results of the
second-order system, which provides estimations for the occurrence of acoustically driven
flows within the inner ear. Therefore, the first part is concerned with an accurate verification
of this acoustic system. It is analyzed under an harmonic stimulation of the oval window
at different frequencies and amplitudes. Furthermore, the system is examined both in the
active case, where the outer hair cell motility is taken into account, and in the passive case
without any motility driven forces.

Particular attention is paid to the equilibrium state of the first-order system, since it is
the basis for the numerical calculation of acoustic streaming. This steady state is achieved
within a short time frame. According to Köster,6 the equilibrium state of the fluid can be
expressed by harmonic oscillations of the individual field variables at fixed positions. In
terms of sin- and cos-functions, the stable state of the velocity field, for example, can be
written as

v(1)(x, t) = v(sin)(x) sin(ωt) + v(cos)(x) cos(ωt). (49)

Therefore, the oscillatory motion of the fluid can be uniquely characterized by the time-
independent functions v(sin)(x) and v(cos)(x).

Today, it is well accepted that the motions of the basilar membrane can be characterized
on the basis of a typical traveling wave pattern. The resultant displacements in comparison
to the traveling wave pattern of the cochlear partition are reviewed in the first part. Fur-
thermore, it has been shown that some boundary layer effects are mainly responsible for
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acoustically driven flows. In the second part, the motion within this thin boundary layer is
therefore compared with an analytical approximation developed by Lighthill.2

4.1.1. Traveling wave on the basilar membrane

The term “traveling wave” is associated with a characteristic displacement pattern of the
cochlear partition. This pattern is characterized by the following properties22,31:

• The amplitude of the traveling wave increases until a point of maximal displacement
(peak) is reached. Often, this location is referred to as characteristic place. Behind this
place, the amplitude falls to zero within a short distance.

• The phase of the oscillatory displacements decreases monotonically along the basilar
membrane. This phase lag may amount to up to several cycles until the traveling wave
dissipates.

• The traveling wave is caused by (passive) mechanical interactions between the fluid and
the structures of the cochlea. This means that the traveling wave is, in particular, not a
result of any other internal (physiological) processes.

• In contrast to the acoustic waves, which propagate at speeds of about 1500 m/s, the
velocity of the traveling wave motion of the basilar membrane is significantly slower.

Passive Cochlea Model: Figure 8 shows the envelopes and phases of the traveling waves
of the basilar membrane in the passive case. The sound field is driven by the sinusoidal
displacement of the oval window (cf. Fig. 2) at stimulation frequencies of 128, 256, 512, 1024,
2048, 4096 and 8192 Hz. The displacement pattern of the cochlear partition is exemplarily
illustrated in Fig. 7(a). It becomes apparent that the resultant displacements of the cochlear
partition meet the requirements of the typical traveling wave motion as described above.
The phase lag adds up to just under four cycles at the lower frequencies and increases to
more than five cycles at higher frequencies.

As it can be clearly seen, the longitudinal position of the characteristic place depends
mainly on the frequency. Greenwood25 empirically developed a functional relationship that
assigns the characteristic places to their corresponding stimulation frequency. With regard
to the human cochlea this frequency-position map is given by

f = 350 · (10
2.1
lbm

(x−lbm) − 0.85), (50)

where lbm denotes the length of the basilar membrane. Figure 9 shows that the maximal
displacements of the traveling wave are located up to about 5mm closer to the base in the
passive cochlea model than in the case of Greenwood’s examination.

Active Cochlea Model: The passive behavior represents only the mechanics of a dead
cochlea. As it can be seen in Fig. 10, the dynamics of the living ear are quite different to
those of a postmortem cochlea.

First of all, it can be noted that the amplification of the traveling wave motion is
accompanied by a spatial shift of the peak in the direction of the apex. Such a shift is
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(a)

(b)

Fig. 6. (Color online) Equilibrium state of the first-order system at a stimulation frequency of 1024 Hz in the

passive cochlea model. The vector field of (a) illustrates the cosine-component v(cos) of the first-order velocity

field, whereas the background color is associated with the cosine-part p(cos) of the first-order pressure field.
In this context, the intensity of the red (blue) color represents the amount of the positive (negative) excess

pressure. In contrast, (b) illustrates the respective sine components v(sin) and p(sin).
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(a)

(b)

Fig. 7. (Color online) Traveling wave motion of the basilar membrane at a stimulation frequency of 1024 Hz

in the passive (a) and active (b) cochlea model. The red line represents the cosine part ξ(cos) of the oscillatory

motion, whereas the blue line is associated with the sine component ξ(sin). The black line illustrates the
envelope.

mostly consistent with experimental studies. It is an indication that the energy of the
traveling wave motion is enhanced by the outer hair cells.22 Therefore, the characteristic
places are closer to the functional relationship from Greenwood than in the passive case (cf.
Fig. 9).

It can be clearly seen that the maximal displacement of the basilar membrane is increased
up to the ten-fold of the maximal displacement in the passive case. In literature different
definitions of the cochlear amplifier gain are used.22 In this paper, the gain is understood
as the difference between the amplitudes of the active and the passive cochlea at the same
locations on the basilar membrane. Within the cochlea of the guinea pig, gains between
65 dB and 78 dB were measured at the characteristic places of frequencies between 17 kHz
and 19 kHz.32–35 As shown in Fig. 11, such a gain of the amplitude cannot be completely
reproduced by the computational model presented in this work. Nevertheless, the model
presented in this work provides an instrument to investigate the effects of the amplification
mechanisms on the resultant acoustically driven flows. On the basis of these results, further
conclusions may be drawn with regard to the impact of acoustic streaming at even higher
gains.
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(a)

(b)

Fig. 8. (Color online) Envelopes (a) and phases (b) of the traveling wave in the passive cochlea model
computed at constant stape displacement for a set of different frequencies: 128 (red line), 256 (blue line),
512 (green line), 1024 (black line), 2048 (purple line), 4096 (orange line) and 8192 Hz (brown line).

In addition, the traveling wave is characterized by a higher phase lag than in the passive
cochlea model (cf. Fig. 10(b)). In consideration of the envelopes (cf. Fig. 10(a)) it can be seen
that the respective shapes in the active model are significantly sharper than in the passive
case. This property of the amplification mechanism is believed to be a very important aspect
with respect to the acoustic perception, because it enhances the frequency selectivity.

4.1.2. Motions within the stokes boundary layer

Because the dissipation of acoustic energy within the thin Stokes boundary layer next to the
basilar membrane is a major cause for second-order flows, particular attention has to be paid
to an accurate numerical approximation of the motions within these boundary layers. The
results of the computational model presented in this work can be validated by comparing
the numerically determined motions with some theoretical considerations from Lighthill.2

In his very important contribution, Lighthill estimated the dimension of acoustic streaming
within the inner ear on the basis of a mathematical description of the flow field adjacent to
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Fig. 9. The frequency-position map (solid line) from Greenwood25 assigns the characteristic places to their
corresponding stimulation frequency. The triangles illustrate the characteristic places resulting from the
passive cochlea model whereas the dots represent the characteristic places in the active case.

(a)

(b)

Fig. 10. (Color online) Envelopes (a) and phases (b) of the traveling wave in the active cochlea model
computed at constant stape displacement for a set of different frequencies: 128 (red line), 256 (blue line),
512 (green line), 1024 (black line), 2048 (purple line), 4096 Hz (orange line) and 8192 Hz (brown line).
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Fig. 11. (Color online) Positional gain of the envelopes at different frequencies in the active cochlea model
with respect to the envelopes in the passive cochlea model: 128 (red line), 256 (blue line), 512 (green line),
1024 (black line), 2048 (purple line), 4096 (orange line) and 8192 Hz (brown line).

the basilar membrane. In this context, he suggested to approximate the three-dimensional
distribution of the fluid motion next to the traveling wave of the basilar membrane by the
superposition of solutions of the Laplace equation

∂2φ

∂x2
2

+
∂2φ

∂x2
3

− k2φ = 0, (51)

where φ denotes the velocity potential. By the use of the so-called WKB method (also
known as Liouville–Green method), Lighthill reasoned that the fluid motion outside of a
thin boundary layer of the basilar membrane near to the characteristic place can be mainly
approximated by a two-dimensional circular motion perpendicular to the radial axis. In
terms of a mathematical formulation, this motion can be written as

v1 =
∂φ

∂x1
= iξe−kx2 , (52)

v2 =
∂φ

∂x2
= ξe−kx2. (53)

But in order to meet the no-slip boundary conditions at the basilar membrane, Eqs. (52)
and (53) have to be adapted according to Rayleigh’s law of streaming ,36 yielding

v1 = iξ
(
1 − e−x2

√
iωρ/η

)
, (54)

v2 = ξ


1 +

(
1 − e−x2

√
iωρ/η

)ω
c

√
η

iωρ


 . (55)

Figure 12 shows the numerically determined motions within the thin boundary layer in
comparison to the analytical results from Lighthill. The thickness of the boundary layer can
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(a)

(b)

Fig. 12. (Color online) Comparison between the numerical results of the computational model (solid lines)
presented in this work and the theoretical approximation (dashed lines) of the fluid motions within the
Stokes boundary layer from Lighthill2 near to the characteristic place at a stimulation frequency of 1024 Hz
in the passive model. (a) illustrates the longitudinal velocity components whereas (b) shows the vertical
components. The red, blue and black lines are associated with the cosine-part, the sine-part and the amplitude
of the respective velocity component.

be approximately determined to 5
√

η/ρω. With regard to typical stimulation frequencies
and the spatial dimensions of the cochlea, the Stokes boundary layer is comparatively small.
Therefore, it is very important that the finite element discretization process constructs a
mesh that is sufficiently small to ensure an adequate approximation of the velocity and
pressure field. It can be noted that the motions close to the boundary are nearly identical.
The greater the distance to the cochlear partition, the greater the deviation of the numerical
results from the analytical approximations.

In consideration of the differences between both approaches, these deviations between
the results seem to be relatively small. In contrast to the computational model presented
here, Lighthill’s model neglected the energy dissipation due to viscous forces within the bulk
as well as some interference effects arising from the interaction with the solid boundaries.
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Fig. 13. (Color online) The graph illustrates the resultant Reynolds stresses of the computational model
(solid lines) within in the Stokes boundary layer in comparison to theoretical approximations (dashed lines)
from Lighthill.2 The data originate from the characteristic place at a stimulation frequency of 1024 Hz with
respect to the passive cochlea model. The red lines depict the shear stress component that describes the
x2-flux of x1-momentum per unit area. In contrast, the blue lines are associated with the normal stress
component that represents the x1-flux of x1-momentum per unit area.

In addition to this, by the use of the Laplace equation (51), Lighthill assumed that the
motions can be described as an irrotational and incompressible flow. Otherwise, also the
numerical evaluation has the well-known limitations in accuracy, based on the local reso-
lution of the mesh, the choice of form-functions as well as other numerical effects. Whilst
taking all these aspects into account, the computational model yields very good results
when comparing the numerical results of the motion within the Stokes boundary layer with
the analytical approximations from Lighthill.

4.2. Fluid flows driven by the second-order system

It was determined that the most important cause for acoustic streaming field can be asso-
ciated with the forces within the thin boundary layer next to the basilar membrane. In the
first part of this section, the stresses within this boundary layer are therefore compared with
the analytical approximations from Lighthill.2 In addition, the magnitude of the acoustically
driven flow velocities are contrasted with his resultant estimates. The flow field arising from
the mean second-order system is described and evaluated in the second part of this section.
In this context, the flow field is also compared with experiments made by Tonndorf.4

4.2.1. Force source driven streaming

In order to understand the physical origin of the resulting forces, Bradley7 pointed out that
the force-source distribution, accurate to the second-order, can be written as the product
of the fluid-acceleration a = ∂v

∂t + (grad v)v and the density:

f̃ = −〈(ρa)〉 + O(ε3). (56)
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Therefore, the force depends mainly on the phase between the fluid-acceleration and the
density. The exerted force per unit volume f̃ can also be represented in terms of the well-
known Reynolds stress tensor, which can be expressed as ρvivj. By using integration by
parts, the (first-order) mass conservation (cf. Eq. (10)) and the product rule, the force-
source distribution can be written as the spatial variation of the Reynolds stress:

f̃ = −ρ(0)

〈
∂v

(1)
i v

(1)
j

∂xi

〉
ej. (57)

This force can furthermore be decomposed into a shear stress component and a normal
stress component. The shear stress components describe the flux of momentum per unit area
perpendicular to its orientation whereas the normal stress components are characterized by
equal directions of the force and its flux.

The results of the experiments, performed by the computational model, show that the
forces are predominant at the adjacent boundary layers of the basilar membrane near to the
characteristic place. This observation is in conformity with the theoretical considerations
from Lighthill2 whose estimation of acoustic streaming is mainly based on the Reynolds
stresses occurring within the Stokes boundary layer. In his work, he evaluated an effective
slip velocity outside of the thin Stokes boundary layer. In terms of the velocity amplitude
of the oscillating basilar membrane, this effective slip flow can be expressed as

πfk

2
(ξ(amp))2 − 3πf

2
ξ(amp)∂ξ(amp)

∂x1
. (58)

The first term as well as one-third of the second term originate from the shear stress
component that transports the x1-momentum in the x2-direction. In contrast, two-thirds
of the second summand can be attributed to the normal component of the Reynolds stress
driven force. A detailed derivation of this slipping flow estimate can be found in the work
from Lighthill.2

The formula from Lighthill can be used to calculate the effective slip velocity of acoustic
streaming on the basis of the first-order field resulting from the computational model.
The resultant maximal velocities are shown in Fig. 14(b). In turn, Fig. 14(a) illustrates
the maximal mean velocities outside of the Stokes boundary layer that are calculated on
the basis of the computational model. By comparing both results it can be noticed that
the velocities of the computational model are up to one order of magnitude larger than
Lighthill’s estimates.

These discrepancies can mainly be traced back to the slight differences in the distribu-
tion of the Reynolds stress within the Stokes boundary layer. Figure 13 shows the numer-
ically determined stresses in comparison to the stresses that are calculated on the basis of
the velocity components (54) and (55) used by Lighthill. These deviations arises mainly
from the differences with respect to the first-order velocity field (cf. Fig. 12). One rea-
son for the discrepancy in the first-order flow field lies in the quite different underlying
assumptions of both models. In order to estimate the acoustically driven flows analytically,
Lighthills approach is based on some fundamental simplifications that are not necessary for
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(a)

(b)

Fig. 14. (Color online) (a) shows the Eulerian specification of the maximal mean velocity outside the Stokes
boundary layer that are determined by the computational model. By comparison, (b) illustrates Lighthill’s
estimate2 of the maximal mean velocity. The velocities are calculated on the basis of the numerical results
of the first-order system at different frequencies and outer hair cell activities: 128 (red line), 256 (blue line),
512 (green line), 1024 (black line), 2048 (purple line), 4096 (orange line) and 8192 Hz (brown line).

the numerical approach presented here. Nevertheless, another reason for the deviations can
also be found in numerical errors, especially due to the very small dimensions of the Stokes
boundary layer.

4.2.2. Békésy’s eddies

The numerical simulation of the computational model has shown that acoustic streaming
is mainly driven by boundary layer mechanisms (cf. Chap. 4.2.1). Acoustically driven flows
that are based on mass-transport mechanisms are not as significant as the previously men-
tioned phenomenon. As shown in Fig. 15, the mean fluid motion of second-order can be best
described by two eddies, which are almost symmetrically arranged to the cochlear partition.
Of course, this circular movement must be thought of as superimposed by the first-order
fluctuations. But a separated evaluation is useful, since both motions can be described on
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(a)

(b)

Fig. 15. The Lagrangian mean velocity field of the second-order system at a stimulation frequency of 1024 Hz
in the passive (a) and the active (b) cochlea model. The flow field constitutes a first-order approximation
of acoustic streaming and is characterized by two eddies above and below the cochlear partition near to the
characteristic place.

different time-lines due to their difference between both velocities. The direction of the
rotation of each eddy is specified by a movement toward the apex for fluid particles that are
located directly next to the partition. Thus, an opposite directed flow occurs close to the
outer boundary. The velocity of each eddy varies along its streamlines. Next to the cochlear
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Fig. 16. (Color online) Lagrangian specification of the maximal mean velocity at different stimulation fre-
quencies and outer hair cell activities: 128 (red line), 256 (blue line), 512 (green line), 1024 (black line), 2048
(purple line), 4096 (orange line) and 8192 Hz (brown line).

(a)

(b)

Fig. 17. (Color online) Maximal mean velocity (Lagrangian specification) at different stimulation frequencies
and stimulation amplitudes in the passive cochlea model (a) as well as in the active model (b) 128 (red line),
256 (blue line), 512 (green line), 1024 (black line), 2048 (purple line), 4096 (orange line) and 8192 Hz (brown
line).
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partition, the fluid is accelerated until a point of maximal velocity is reached. Shortly behind
the position of maximal velocity, the direction of the fluid motion turns back and the veloc-
ity decreases. The maximal mean velocities at different stimulation frequencies, stimulation
amplitudes and outer hair cell activity parameters are illustrated in Figs. 16 and 17.

Dependency of the frequency: The longitudinal position of the center of each eddy is
nearly identical to the position of the maximal displacement of the basilar membrane.

Dependency of the amplitude: As it can be seen in Fig. 17, the maximal velocity of
the mean flow is proportional to the square of the stimulation amplitude. Such a quadratic
dependence on the velocity was also observed by the experiments from Tonndorf.4 In addi-
tion, the results indicate that the amplitude has no (significant) influence on the shape of
the eddies. In other words, the change of the amplitude causes only a spatially uniform
(scalar) scaling of the vector field that represents the mean flow.

Dependency of the outer hair cell amplification: Figure 16 illustrates that the velocity
of the acoustically driven flows grows almost exponentially with the outer hair cell activity
parameter. But in contrast to the amplitude, this growth depends on various factors such
as the gain of the displacement of the basilar membrane, the phase velocity of the traveling
wave and its envelope. Furthermore, the activity parameter also influences the shape of the
eddies. By comparing the eddies of the active model with the passive model (cf. Chap. 15)
it can be clearly seen that the outer hair cell driven amplification process is accompanied
with a decrease of the eddy size.

In summary, it can be noted that the numerical results are almost in conformity with
the experimental studies from Tonndorf.4

5. Conclusion

This work was concerned with the numerical simulation of acoustically driven flows within
the inner ear. It is the first time that the occurrence and magnitude of acoustic streaming
was successfully analyzed on the basis of a computational model. The relevance of acoustic
streaming with respect to its physiological impact on the mechanisms of hearing is still an
open question. Therefore, the results of this work provide instruments in order to support
the discussion about the influence of nonlinear flow effects within the cochlea.

Up to now, acoustically driven flows were either examined by performing experiments
on mechanical models4 or on the basis of analytical considerations.1,2 As mentioned by
Tonndorf,4 mechanical models have the advantage of allowing direct observation of nonlinear
mean flows. But due to a different scaling of the mechanical model in relation to the human
cochlea, the experiments can only provide information about the principle structure of a
potential mean flow. Furthermore, the mechanical model has some significant limitations
concerning its usability, for example with respect to the stimulation amplitude and the
frequency range.
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In contrast, Lighthill2 analytically derived an estimate of the magnitude of acoustic
streaming outside the Stokes boundary layer near to the characteristic place. But his ana-
lytical model is based on substantial simplifications and it does not describe the concrete
flow field of the secondary mean motion.

The computational model presented in this work overcomes most of these difficulties. On
the one hand the model has been performed on the basis of realistic dimensions with regard
to the physical properties and, furthermore, there has been no constraints concerning the
usability as in the case of mechanical model. On the other hand, the simplifications made
by the modeling process are not as substantial as in an analytical model. In this context it
should be emphasized that the computational model provides information about both the
structure of the secondary flow field as well as the magnitude of the mean motion.

In comparison to other cochlea models, a very comprehensive and complex model has
been developed in order to be able to simulate the acoustically driven flows within the inner
ear. The complexity of the presented model is the result of the explicit consideration of the
dynamical behavior of three major components: the fluid, the basilar membrane and the
outer hair cell motility.

Particular attention has been paid to an appropriate representation of the fluid in order
to ensure that the system yields accurate results with respect to the linear and nonlinear
flow motions. The dynamics of the fluid were simulated by using concepts from the field of
continuum mechanics.

The consideration of the interactions of the fluid with the biological structure that
separates the scala tympani from the scala vestibular was a very important aspect in order
to virtually reproduce the characteristic flow field. Therefore, the cochlear partition was
modeled as an oscillatory system as suggested by Mammano and Nobili.19 But in contrast to
the model from Mammano and Nobili, the external hydrodynamic forces have been directly
calculated on the basis of the fluid dynamics and not with the help of a phenomenological
approach. While the dynamical reaction of the basilar membrane was evaluated in the time
domain, Mammano and Nobili examined the displacements of the cochlear partition in the
frequency domain.

The displacement pattern of the basilar membrane and also the flow field of the fluid
significantly differ between the active case, where the outer hair cell motility is taken into
account, and the passive case, where this amplification mechanism is neglected. Therefore,
the effect of the outer hair cell motility on the resultant secondary flow field has also been
analyzed. The additional force exerted by the outer hair cells was calculated on the basis
of an approach suggested by Mammano and Nobili,19,20 who modeled the amplification
mechanisms as an additional oscillatory subsystem.

In summary, a set of different differential equations and boundary conditions were
deduced that describe the complex dynamics of the whole cochlear system. By the use
of a well-known approach from the perturbation theory, it was possible to split the system
of equations into a set of successive linear subsystems. With regard to the numerical simu-
lation of acoustic streaming, this perturbation approach was so far only used in the context
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of pure fluidic systems. Therefore, it is the first time that this approach was extended to an
highly fluid-structure coupled problem like the cochlea.

The resultant first-order subsystem describes the linear acoustic reaction of the system.
The spatial discretization of this acoustic system, performed by means of the finite element
method, resulted in a system of ordinary differential equations, which, in turn, was dis-
cretized by using an implicit integration method. Due to the strong coupling between the
fluid, the basilar membrane and the outer hair cell motility, the different processes were syn-
chronously solved by a monolithic approach. The simulation of this linear acoustic reaction
was a very computationally intensive part of the whole process, but the accurate calculation
of the first-order solution was a crucial requirement for the successful determination of the
second-order mean flows.

The results of this first-order subsystem were compared to the results of other experimen-
tal studies and analytical considerations. It has been shown that an harmonic stimulation
at the oval window induces the expected typical traveling wave motion of the cochlear par-
tition. Furthermore, the relationship between the stimulation frequency and the associated
characteristic places complies with empirical experiments.25 It has been proven that the
main cause for acoustically driven flows can be found in a boundary layer driven mecha-
nism. Therefore, particular attention has been paid to the fluid motions within the thin
Stokes boundary layer of the cochlear partition, which comply, in the main, with analytical
approximations developed by Lighthill2 on the basis of theoretical considerations from Lord
Rayleigh.36

If the outer hair cell motility is taken into account by the simulation process, the traveling
wave pattern will, inter alia, be locally enhanced near to the characteristic place. This
significant amplification is, in addition, accompanied with an increased phase lag and an
apical peak shift as also observed by Mammano and Nobili19 in their computational model.
It should be noted that the linearized model of the outer hair cell motility cannot be used
to reproduce the nonlinear behavior of the amplification mechanism. Nevertheless, it has
been shown that this linear model was an appropriate instrument to analyze the effect of
the outer hair cell driven amplification on the resultant mean flows.

The time-averaged second-order subsystem yielded a first-order approximation of the
acoustically driven flows within the inner ear. The application of the finite element method
resulted in a stationary system of equations where the right-hand vector includes the results
of the first-order system in terms of a virtual force- and mass-source distributions.

The resultant acoustic streaming flow field is in accordance with the experimental studies
from Tonndorf.4 Furthermore, the results of the numerical simulations indicate that the
maximal velocity of the acoustically driven flows is up to one order of magnitude larger
than the analytical estimates from Lighthill.2

6. Outlook

This paper opens up a variety of new opportunities for further research activities.
The numerical estimations of acoustic streaming presented in this paper allow a more
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substantiated discussion of the mean flows on the physiological impact in hearing. Also
the model itself shows some potential for further improvements. For example, an exten-
sion for a full three-dimensional examination would be desirable. Furthermore, the numer-
ical approach should be further investigated in terms of accuracy, convergence and grid
dependency.
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