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Abstract—In this work we describe the behavior of electrical
circuits by a mixture of algebraic and differential equations.
We show how to use a geometric interpretation and geometric
algorithms to explicitly compute operation points for a special
class of electronic circuits. To that end, we discuss how to trace
curves on folded manifolds.

I. INTRODUCTION

The concept of electrical circuits was first presented by
Kirchhoff and Maxwell; for a historical study of network
analysis and further references see Mathis [3]. Such circuits
are characterized by a certain class of so-called network
elements and a connection port. The essential elements are
linear and non-linear resistors, inductors and capacitors as well
as dependent and independent sources which are described by
very simple constitutive relations. To connect these network
elements we use a connection b-port which conserves the
energy; this idea was first presented by Belevitch. In elemen-
tary considerations such a b-port is described by Kirchhoff’s
laws and the constitutive relations of ideal transformers. A
complete discussion of the general class of nonlinear RCL
circuits based on the ideas of Belevitch is given by Mathis [3]
(see also Mathis and Marten [5]). Although it is possible to set
up explicit ordinary differential equations (ODE) or so-called
state-space equations & = f(z,t) f: IR"™ — IR" the resulting
dynamical equations for describing networks are not well
adapted to the process of derivation because the constitutive
relations of the network elements and the description equations
of the connection b-port consist of a mixture of algebraic and
differential equations. Therefore a more general concept of
circuit description is needed.

The paper is organized in the following manner. In the
next section we present the main ideas of circuit analysis
using concepts from differential geometry. Then we show
that this approach is not only suitable for abstract circuit
analysis but it is also an appropriate basis for studying jump
phenomena of a certain class of electronic circuits using
concepts from computational differential geometry. Our ideas
are illustrated by a simple example. However, it is applicable
to more interesting classes of circuits including so-called
resonance tunneling devices (RTD) as well as bipolar and
MOS transistors.
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II. ELECTRICAL CIRCUITS AND DIFFERENTIAL
GEOMETRY

It was observed for the first time by Moser that the property
of reciprocity is crucial for the formulation of a theory of
nonlinear electrical circuits including dissipation of energy.
His idea was generalized by Brayton and Moser [1] in 1964
where the differential equations for the class of nonlinear re-
ciprocal circuits were formulated in a systematic manner. From
a differential-geometric point of view, further mathematical
structures had to be defined based on the constitutive relations
for the network elements. This was done by Smale [2] in 1972
for the first time and generalized by Matsumoto to a more
general class of nonlinear circuits in 1975.

The dynamics of a system and an electrical circuit can
be formulated by a set of nonlinear differential equations
with respect to currents and voltages where certain algebraic
constraints have to be added. From the classical point of
view this means that the collection of differential equations
for the capacitors and inductors (constitutive relations) have
to be combined with Kirchhoff’s laws (homogeneous linear
algebraic equations) and the resistive constitutive relations
(nonlinear equations). In the framework of differential ge-
ometry we have to consider (nonlinear) differential equations
on the state space that is endowed in generic cases with the
structure of a differentiable manifold. Therefore we have to
construct the state space S and the vector field X in order to
define the dynamics of a circuit: £ = X o¢ X :S — TS.
The state space S can be constructed using the Kirchhoff space
K c RP x R"" and the set of zeros of Fr, the resistive
equations. If the condition of transversality of these subsets is
fulfilled their intersection is a differentiable manifold (Smale
[2]). For the construction of the vector field X a 2-tensor
g(,): S =>T*+S®T+Sandalformw : S - T xS
can be obtained from the constitutive relations and Kirchhoff’s
laws. It was shown by Brayton and Moser [1] that w can be
obtained from a so-called mixed potential P using the exterior
derivative, that is w = dP. We get the 2-tensor ¢ if a 2-tensor
G is defined on the linear subspace of inductor currents and
capacitor voltages

G =Y L(i})dif @ dif = C(ug)duf @ dug; (1)
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and pullback this 2-tensor on the state space, that is ¢ = 7*G
where 7 is a projection from S to the linear subspace of
inductor currents and capacitor voltages. In the same man-
ner the 1-form w can be obtained. Using these objects an
abstract equation for the vector field X can be formulated
g(X,Y)=w(Y)forall Y € TS.If this equation has a unique
(local) solution the case of a (local) generic circuit dynamics
is characterized. The condition for the (local) existence of X
is that g is non-degenerated, that is if G is non-degenerated
and 7* exists. These conditions can be translated in a more
concrete manner and it can be shown that with a suitable
“disturbance” of the constitutive relations, the two conditions
are fulfilled — this is called generic. For more details and
numerical aspects of circuit analysis see Mathis [3] and [4].

III. COMPUTATIONAL GEOMETRIC METHODS
A. Initial Situation

Opposed to conventional methods which are using ho-
motopy methods to search operation points, here homotopy
method are only used in finding specific starting points on the
manifold. After obtaining a starting point, we use the dynamic
on the manifold to trace a solution. In this approach we will
consider the derived circuit equations as a geometrical problem
only.

As mentioned, we can treat state space as a differentiable
manifold and the dynamic defined on it as a differential
equation system:

B(x)&
0 =
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where = and y are the vectors of the electrical quantities, ¢
a time variable and B a matrix. The state space manifold is
generally embedded in a space of higher dimension. We will
restrict our study to manifolds of dimension one or two and
co-dimension one, e. g. curves in the plane or surfaces in
Euclidean 3-space. The dynamic will then generate curves on
that manifold, which we want like to trace. Notice, that in
general it is not possible to obtain a closed explicit form fr
the manifold.

B. Example: Van-Der-Pol-Oscillator

The degenerated Van-der-Pol-Oscillator is a simple circuit
consisting of a resistor and a capacitor that are connected in
a circle, described by:

dv

— = 4 4
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0 = —v—d+i (5)

where the differential equation (4) characterizes the capacity
and the non-linear relation (5) defines the resistance. From
a geometric point of view, the solution of (5) is a one-
dimensional manifold, e. g., a curve M in the plane and the
differential equation generates a dynamic which should be
solved with respect to the current <. But this is not feasible
globally, since in the extrema of the curve wrt. v, the dynamic

degenerates to 0. Since ¢ # 0 in these points, they can not
be equilibria and therefore the model does not capture the
behavior of the circuit.

The described problem can be solved by a so-called Ti-
chonov regularisation [8], [9] which transforms the algebraic
equation to a differential equation

e— = —v —i% 4. (6)

with € near zero. The dynamic of the system is now generically
smooth and the formerly singular points now exhibit a very
fast dynamic, the system “jumps” from a formerly singular
point tangentially to another area of the manifold. We want
to capture this phenomenon with differential geometric tools
and trace the curve on the manifold to an extremum where it
jumps tangentially, thus following the oscillating path.

Fig. 1.

Possible curves jump on a folded manifold.

C. Basic Principles of Tracing Curves on Two-Dimensional
Manifolds Embedded in Three-Dimensional Space

To start tracing a curve on a manifold, we first need a
starting point on this manifold. For that we can, e. g., use
standard homotopy methods which are discussed in the next
section.

We can then trace a curve on the manifold by numerically
integrating the given differential equations which describe a
tangent vector field on the manifold. This should lead us to an
operation point or, if an oscillating circuit is given, represents
the set of states.

Following the curve, we want to consider what happens,
when the curve reaches a fold, i. e., a generalized extremum
situation on the manifold. This will be the case if the circuit
oscillates: the operation point jumps from the extremum to
another (non-neighboring) point of the manifold. Therefore
we’re interested in a submanifold S4 of maximum points, as
they characterize points where a jump may start. Additionally,
we want to determine from the submanifold (S4) a second one



by orthogonal projection(Sz) that represents the set of points
where a jump can ends.

To trace a path on a two-dimensional manifold M embedded
in a three-dimensional space we can define a differentiable
manifold by:

g(z,y,2) =0 (7
to define a path on that manifold we use the parameter ¢:
g(x(t), y(t), 2(t)) ®)

Supposing we need the set of maximum points in z-
direction, we differentiate wrt. z by:

g:(x,y,2) =0 )

Differentiate wrt. ¢ leads to:

/
d x/(t)
79: (@), y(1),2(1) = (920, 924, 922) | /(1) | =0
!
2'(t)
(10)
Using the nabla-operator as a shorthand we get
. ' (t)
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In this simple setup, we can easily find a starting point by
using z as a function of x and y:

g(w(t),y() ( (t),y@®)) = 0
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With it we are able to calculate .
As an example we see in Figures 1 and 2 the implicit
function:

r=—-23+ y22
The shape can be taken as an example set of operation points.

D. Using Homotopy Methods for Finding Starting Points

The methods described in the previous section assume that
a starting point can easily be found. This is not true for
manifolds with a co-dimension greater than one. To acquire
such a point it is possible to use homotopy methods established
by Kellogg et al. [10], Smale [11], and Chow et al. [12]
which have become a powerful tool in finding solutions of
various nonlinear problems, such as zeros or fixed points of
maps. A distinctive advantage of the homotopy method is that
the algorithm generated by it exhibits the global convergence
under weaker conditions. A good introduction is given by
Allgower and Georg [13]. The homotopy copncept is used to
determine solutions of high-dimensional non-linear equation
systems by initially finding a solution to a simpler problem
and then systematically transforming it to the actual problem
by embedding it in a homotopy.

N

Fig. 2. Traced curve of maximal turning points (blue) and its projection on
the same manifold (green)

Consider g(w) is regular. The implicit function theorem
implies the existence of a curve p which solves:

H(w, A\, wo) = g(w) + (A = D)g(wo),

If we formulate the map g(w) so that its zero set is a point
on the manifold, the curve p will converge towards it under
certain conditions. This methods was used by Naf3 and Wolter
[6] [7] to find solutions for similar geometric problems. By
using this experience this methods can be applied to higher
dimensions.

Ae0,1]  (13)

IV. CONCLUSION

We have shown, how geometrical algorithms can be used
to solve the problem of finding operation points of a class
of oscillating electronic circuits. Basically we show how to
explicitly calculate “jump” sets on the state space manifold
that capture the behavior of the circuit. If it is possible to
extend these methods to higher dimensional spaces, they can
potentially be used as an alternative to SPICE-based circuit
simulators in commercial software packages. To extend the
methods to higher dimensions it is necessary and important
to create new forms of representation, e. g., animation, color,
texture, or dimensional reduction to present and debug the
results.
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