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Abstract

With the ever rising quality and complexity standards in computer
graphics, the generation of detailed content has become a bottle-
neck. While high quality visualization can be achieved at compar-
atively low cost, content generation remains a labor intensive and
expensive task. Procedural approaches can support this process by
automating parts of it.

One common problem of procedural methods is that the variables
controlling the result are difficult to adjust. Especially fractals may
have unintuitive parameters, which make them difficult to handle in
praxis.

In this paper we introduce the concept of a Region Tree to struc-
ture the workflow with these procedures and present a supporting
framework. On top of this we show how we used GPU integration
to make interactive editing possible.

With this approach it is easy to construct any number of procedural
models from a set of user defined characteristics. We illustrate our
method by creating an earth-like complex planet completely proce-
durally.
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1 Introduction

The generation of high detailed objects became increasingly im-
portant during the last years. The visual appearance is particularly
important in areas where the impact of the product depends on the
quality of the visualization, as in the advertising, film or game in-
dustry. However creating those details manually can be a time con-
suming task and the possible level of detail is limited. Fully auto-
mated processes on the other hand are not feasible because of the
creative nature of design processes in general. A common solution
is to use semi-automated approaches in which the user guides the
automated process. This is especially useful when the time needed
for the automated process allows the user to control it interactively.

One way to generate details automatically is to use fractals, as they
are not bound to any level of detail. Noise based fractals are partic-
ularly useful for a seed based generation of details. Those fractals
can be used to generate randomized but controllable details by ad-
justing the seed value. We will concentrate on the generation of
landscapes in this paper, but our methods are not restricted to them.

1.1 Related Work

Noise functions are a common approach to generate procedural tex-
tures and models for graphical applications. They are often used to
recreate natural phenomena where a certain amount of irregular-
ity is needed to achieve a realistic look. The original Perlin noise
function was proposed by Ken Perlin in 1985 [Perlin 1985]. Be-
cause of its computational complexity, it has been subject to sev-
eral optimizations since. For example, Perlin proposed Simplex
Noise [Perlin 2001] as an improvement to his former algorithm.
This algorithm has several advantages over the original, e.g. of-
fering a reduced complexity in higher dimensions. There are also
GPU implementations of the noise function [Tzeng and Wei 2008;
Olano 2005], one particular fast implementation has been presented
in GPU Gems 2 [Green 2005]. It makes use of massive paralleliza-
tion and the interpolation abilities of modern graphic cards.

Fractals can be created by combining noise functions at different
scales. An overview about this topic can be found in [Mandelbrot
1987] and [Miller 1986].

For the procedural generation of terrain many different approaches
exists.

One way is to simulate different types of erosion such as wind [Shao
2008] or water flow [Kelley et al. 1988; Musgrave et al. 1989]. Al-
though this approach is most promising in terms of realistic results,
the complexity of the underlying natural phenomena makes a con-
vincing implementation very difficult and time consuming. Current
implementations require a lot of computing time and thus cannot be
used in interactive tools.

Another way is to use genetic programming as in [Frade et al.
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2009]. The idea is to compose a set of mathematical functions to
create different shapes and then let the user pick the most appropri-
ate one. Based on this selection the genetic program is trained and
new shapes are generated. This process is repeated until the result-
ing shape is good enough. Unfortunately this procedure can take a
very long time and the resulting landscapes tend to look artificial.

Another procedural method is to use fractals like fBm (fractional
Brownian motion) or the multifractals presented in [Ebert et al.
2003]. Usually a composition of different fractals is needed to
achieve the variety of natural terrains. This leads to a significant
amount of variables with often unintuitive influences on the look of
the landscape. Different commercial tools exist to create and ren-
der planets with this approach. The Terragen software [Planetside-
Software 2012] renders visually impressive results, but it is not an
interactive application and the included preview function is very
limited. Because the result can only be validated after minutes of
rendering, the adjustment of fractal parameters is a time consuming
procedure. In 2006, Schneider et al. [Schneider et al. 2006] pre-
sented an interactive fractal editor. The user can edit the different
parameters of a single fractal, such as lacunarity or the number of
octaves, and add custom deformations. Another GPU-driven real-
time terrain generator is Litosphere [Bösch 2012], they use a graph
to allow the user to edit the terrain in realtime.

Hnaidi et al. [Hnaidi et al. 2010] presented an algorithm that can
create rich terrains based on user defined feature lines using the
diffusion equation. They present visual appealing results, but their
method requires the user to create all the feature lines manually
which results in a time consuming process.

To render a procedurally generated object, one has to apply textures
or colors and calculate shadows and light onto the object. Dachs-
bacher presented in [Dachsbacher 2006] a layer-based approach to
colorize a terrain represented as a heightfield.

1.2 Our Contribution

We contribute a new way to create highly detailed objects with a
technique that requires a description of details and a seed value to
generate enriched versions of the model. Our Fractal Compositing
technique combines the intuitiveness of a simple base mesh with the
possibility to create high details with unlimited diversity. In order
to demonstrate our method, we present a fractal planet generator
that is capable of but not limited to visualizing earth-like planetary
surfaces with different climate zones and terrain types.

Within this context, we also present our recursive Brownian distor-
tion (rBd) algorithm, a modification of the fractional Brownian mo-
tion (fBm) fractal generation process. It allows the creation of more
realistic and diversified coastlines and thus more realistic earth-like
planets.

All our techniques are able to provide interactive framerates when
editing planets, even with high amounts of detail. This is especially
useful for design processes where unintuitive parameters have to be
adjusted, since the results are immediately visible.

To this end, we present how we extended the GLSL shading lan-
guage to accommodate for this interactivity in an easily accessible
way, without loosing any performance.

In the remainder of this paper we will present our Fractal Com-
positing idea together with a semi-automated tool that allows the
user to interactively create a description of the models details. We
demonstrate our method based on a planet generator that we used
to generate earth-like planets and compare our results to the NASA
Visible-Earth high quality images [NASA 2004].

2 Fractal Compositing

We introduce a technique that we call Fractal Compositing. This
technique uses fractals to generate our enriched mesh based on a
simple mesh. In this method we utilize the fractals in two different
ways to generate the enriched mesh.

1. As a heightfield which deforms the object.

2. As a selector for regions or properties.

Using fractals as heightfields is a method that is widely used, re-
sulting in astonishing results. Previous approaches tended to create
very specialized heightfields which were primarily fit for a single
purpose, but not for a mesh that requires a broader diversity of fea-
tures.

Instead, we use different fractals to generate regions and to assign
properties to our mesh. Those regions can be enriched by a heigh-
field or they can be refined in further regions etc.. The major ad-
vantage of our method is the ability to use fractals which are good
at generating a certain detail locally, without being bound to the
fractal globally.

We will demonstrate our idea in the next sections with our imple-
mentation of a fractal planet generator based on the Fractal Com-
positing idea with a few extensions for creating further details pro-
cedurally or using user generated details.

3 Planet Generation

In order to demonstrate the flexibility and ease of use of our con-
cept, we present an application for modeling and rendering realistic
planetary surfaces in realtime using OpenGL.

To create such a planet, we start with a spherical mesh and displaced
the vertices using a combination of different shader functions. The
vertex- as well as the fragment-shader use a weighted combination
of different fractals and the contributions of those to the final re-
sult are represented by a tree structure that we call a Region Tree,
which will be explained in the next section. In order to increase the
rendering quality the displacement was done in a per-pixel fashion.
Thereby the color calculation and the overall shading of the surface
adapts well to the situation.

In addition to base-fractals that define the general distribution of
features of the planet, a variety of different fractal types is used
for modeling the individual regions on the planet – such as forests,
deserts and mountain regions. Many of these fractal types are com-
monly known as e.g. fractional Brownian motion (fBm), Multi-
fractal (MF) and Ridged Multifractal (RMF). All these fractals are
based on certain noise functions. A common approach that yields
good results is to use the aforementioned Perlin noise. However,
in our example we use Simplex noise that needs less computational
effort while providing a better visual quality since it offers a higher
isotropy [Perlin 2001].

For creating the initial planetary surface, fractional Brownian mo-
tion is a very popular approach. However, as Schneider et al. al-
ready pointed out, surfaces created this way look relatively homo-
geneous when applied to larger scales [Schneider et al. 2006] –
which is obviously the case when modeling a whole planet.

Therefore we used a modified version of the original fBm algorithm
which produced more variety and is explained in the next section.
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3.1 Coastlines and continents

In order to compensate for the homogeneity of the fBm method, we
use another fractal algorithm that is based on a technique known
as Domain warping [Schneider et al. 2006]. In this work, we call
our specific version of this algorithm recursive Brownian distortion
(rBd). The base function for this kind of fractal still consists of
fractional Brownian motion. However, the input vector (that is a 3D
point of the planetary surface lying on the unit sphere) is warped in
a specific way before the fBm algorithm is applied. The warping is
applied as follows:

float rBd(vector3 position, int depth) {

const float weight = 0.2;

int seed = 0;

float falloff =

fBm(position * variation, seed);

for(i = 0; i < depth; i++) {

vector3 distortion = vector3(

fBm(position, seed + c1),

fBm(position, seed - c2)),

fBm(position, seed));

position += weight * distortion;

weight = weight * falloff;

seed += 500; // Some random value

}

return fBm(position, seed);

}

With fBm(vector3, float offset) being the fractional
Brownian motion method using a fixed value for lacunarity, per-
sistence and the number of octaves. The values for weight and
variation have been chosen empirically in order to reflect the
structure of the earth’s coastlines as closely as possible. The con-
stants c1 and c2 shift the seed of the fBm method to generate a
better warping effect.

As shown in figure 1, the coastline created with this method looks
more natural than the simple fBm approach. Although the artificial
planetary surface generated with our rBd method lacks the local
details of a real planet, its coastline appears to be quite convincing.

fB rBdm

Figure 1: Comparison of the fBm and our rBd method. As both
methods create completely different planets we chose two typical
coasts. The algorithms differ only in the use of the fBm and rBd
method. The right image replaces the use of the fBm method with
the rBd method to calculate the coastline and inner continental fea-
tures.

3.2 Region Tree

The Region Tree is a data structure that contains information about
the distribution of distinct surface characteristics of a model, e.g
different terrain types for a planet generator.

Figure 2 shows an exemplary version of such a tree used for ren-
dering the images within this paper.

RegionTree

DeepWater

ShallowWater

Coast

Continents

Cold

Temperated

Plains

Forests

Desert

Brown

Sand

Red

Figure 2: The Region Tree used for rendering the example images.
The weights for the different regions differ in the examples and are
not shown in this illustration.

The different surface characteristics are hierarchically organized by
the tree structure. By using this strucure the user can seperate dif-
ferent large scale areas before concentrating on the details of every
one of them individually.

Each node represents an area of the surface and the children break
down this area into parts with the size indicated by their weighting
factor. This means that the inner nodes of the tree define the distri-
bution of the underlying nodes by a weighting factor and only the
leaf nodes determine the actual manifestation of the surface.

This manifestation is applied by functions displacing the height-
field of the respective feature region. Each of these methods is a
(shader-) function f : R

3
→ R that may contain a combination of

completely user defined fractals. In order to calculate the final color
of the surface, the user can use the weights in addition to height and
slope information.

To prevent sharp edges between the children, the user can influence
the smoothness of the transitions. This information is stored in a
decision texture which is used to quickly decide which area a sur-
face point lies in. Each point can be located in several areas which
are then interpolated according to the percentage of each, a feature
providing smooth transitions.

As a consequence of the tree structure each region can only be ad-
jacent to its left or right sibling. If there is no left or right sibling, it
will be adjacent to one of the parents siblings. This constraint can
be used to fulfil certain logical neighbouring constraints, such as
having coasts lie between oceans and continents or prevent forests
from being adjacent to deserts.

It would be possible to use a more general graph structure instead
of a tree to store all this information. One example for such an ap-
proach is used in [Bösch 2012]. But the restrictions of a tree makes
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the design of the surface more managable because the neighbouring
conditions are easily visible and the strict hierarchy is maintained
automatically.

A simple method we used to generate earth-like planets was to gen-
erate a distorted solar energy map and combine it with a fractal rain
map. This gives us a value from which we can generate climes as
shown in figure 3.

rain map distorted solar energy map

colorized climes

rainy

dry

sunny

dark

Figure 3: Method for generating climes using a distorted solar
energy map and a fractal rain map

Although this method does not use physical information about the
elevation and wind direction, we find that it produces realistic look-
ing results.

3.3 Layer Extension

In some cases it can be necessary to make specific adjustments to
the resulting model, e.g. to add man-made structures. We allow
adding textures to the surface of the mesh, which can be used at
will, for example as weights or as an additional elevation map.

Furthermore, one can access all the generated textures and run sup-
plementary programs on this data. This makes it possible for a user
to access their own information to adjust the terrain at their will.
It also allows a programmer to extend the framework with features
that need the generated textures of the preliminary result, e.g. cre-
ating river beds. This method is capable of supporting additional
applications which are impractical to implement using only the Re-
gion Tree.

One example of such a layer extension is shown at the end of the
paper in figure 7.

The Layer Extension and the Region Tree are particular useful when
generating planets, but these techniques are not limited to it. The
Region Tree approach represents a generic structure that can de-
scribe features and deformations for arbitrary objects via fractals
and mathematical functions. Our Layer Extension is a simple way
to support discrete input data for the Region Tree like textures.

4 Compositing Framework

One of the most important parts of our work is the compositing
framework. Working with fractals to create realistic planets re-
quires lots of experimenting to find the right parameters. Our goal
was to create a framework that allows to simply define new param-
eters and change them interactively. To achieve this, we decided to
make extensive use of shaders to get visually pleasing results and a
powerful tool.

We extended the GLSL shading language by creating a preproces-
sor that allowed us to include files. Furthermore, we introduced the
keyword #param that allows the user to define a parameter that can
be controlled in the framework. For each of these parameters a uni-
form variable is created in the shader that is updated automatically
by our application. The whole GLSL compilation unit is shown in
figure 4.

GLSL Source

PreprocessorRegionTree

Textures

ParameterData

Framework

GLSL Compiler

Compiled Shader

Figure 4: Our customized GLSL compilation Unit with a prepro-
cessor and the Region Tree from which we generate code and in-
terpolation textures

The Region Tree mentioned in section 3.2 is used to generate code
that calculates the different weights. The Region Tree itself is not
powerful enough to generate all the code needed as mentioned in
section 3.2.

The tree structure is especially useful in terms of usability and per-
formance. The user can build a simple description for the object he
wants to create and then our Region Tree generates a decision tex-
ture for the description, lowering the number of branches, like if
instructions, in the shader code. As a lot of branches are known to
lower performance our texture based approach proved to be a fast
and reliable tool for us.

5 Results

All the examples we present in this paper were rendered on a work-
station with an NVIDIA GeForce GTX 480 graphics processor. The
fractals and the coloring were computed on the graphic card using
GLSL. We used no textures, all colorings are based on the Region
Tree and the underlying fractals.

Our Region Tree approach allowed for a fast adaption of planetary
features. Figure 6 shows how we adapt the overall temperature of
the planet by adjusting three weights in the Region Tree shown in
figure 2. We adapted the percentages of the Cold, Temperated and
the Desert areas.

To emphasize the realism of our coastlines we compared our re-
sults to an image of the earth. We took the NASA visible earth
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Figure 5: Comparison of an actual image of the earth with our fractal algorithm. Both use only one high resolution image (∼ 11000× 9000

pixels). We created a procedurally generated planet that has a continent like Australia and magnified a region in both images using the same
magnification factor.

image [NASA 2004] of Australia and magnified the bay near Mel-
bourne. We compared different magnifications of this real world
image to one we created using our framework. Figure 5 shows both
versions and even though the level of detail of the NASA images is
higher with an magnification factor of 28, our method is capable of
creating earth-like coastlines.

The resulting framerates are highly dependent on the number of
octaves used in the fractal calculation. Thus we defined the param-
eter Fractal Detail to control the number of octaves. To increase
the performance, some features have a diminished level of detail
compared to others, e.g. the number of octaves for the coastlines
is always equal to the Fractal Detail, whereas the forest contours
have only half the octaves.

In table 1 the number of noise function calls per region is listed.
The numbers are based on a Fractal Detail level of 6. The fragment-
shader has to call the different fractal codes for each visible pixel
on the planets surface.

The minimal number of noise function calls for a pixel is 150 for an
ocean region, whereas the maximal number is 414, the sum of all

Table 1: Number of noise function calls per region for a Fractal
Detail of 6. The base fractal is used in the first node of the Region
Tree cf. figure 2. Regions that are not shown, like the ocean region,
do not call the noise function

Regions Maximal Calls

BaseFractal 150
Continents 18
Temperated 6
Plains 21
Forests 3
Desert 162
Brown 21
Sand 3
Red 30

calls. The blending of climes can force the shader to calculate all
fractal types at once, but it is very unlikely to calculate all of them
for one pixel.

Figure 6: The climatic zone of the planet can be changed easily by
adjusting the tree weights. The effect is immediately visible.
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The average number of calls depends highly on the chosen Region
Tree, the seed value and the view angle. We created an equato-
rial orbit around the earth and measured the average framerate for
the planet shown in figure 7. The diagram in figure 8 shows the
framerate for different Fractal Detail levels. We achieve interactive
framerates up to a Fractal Detail level of 6, which produces visually
appealing results.

FPS

Fractal Detail level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

372

188
128

70

45

25

15

10

Figure 8: Frames per second (FPS, shown in logarithmic scale) for
rendering the full fractal planet with different numbers of octaves
on 800× 600 pixels.

6 Conclusion and Future work

We have presented a new approach to support the construction and
modification of procedural models. By introducing the Region
Tree, we allow the developer to structure complex procedural de-
scriptions in consecutive steps.

Our supporting framework utilizes the processing speed of modern

GPUs to achieve interactive framerates. This reduces the time for
the adjustment of the procedural parameters, because the results are
immediately visible.

The proposed system is not limited to the creation of planetary sur-
faces. It can be altered to enrich more complex base meshes with
completely different details like scars or birth marks on humans or
other irregularities on natural surfaces.

Another way to improve our work is an intensive use of our layer
extension. More complex procedural methods could be imple-
mented to enrich the created meshes e.g. by rivers or man made
structures.
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