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Abstract

Medial curves considered in this paper may be regarded roughly
speaking as the local equidistantial set of certain subarcs of two
given border curves. In contrast to the problem of computing the
equidistantial set (which is a global problem) we focus our attention
on the related local problem by ignoring the question whether the
computed curve consists only of points that are truly equidistantial
to both border curves, the latter ones being considered in their full
range (cf. figure 6). In this paper a method for tracing the medial
curve of two border curves is presented. This method is based
on the mnmerical solution of & system of differential equations in
the parameter space of the considered surface. It is proven that
this system remains regular as long as the medial curve stays away
from focal points of the border curves. Finaily, it is indicated how
the concept might be extended in order to trace the focal curve
of a given curve on the surface. The techniques here are designed
to work on arbitrary regular surfaces where distance has to be
understood as geodesic distance. The method however is useful in
the planar case too.

1 Introduction and related works

Given two point sets A, B in the Fuclidean plane it is very natural to ask
how to compute the locus of points being equidistantial to both sets A and
B. To solve this problem for say general compact sets is certainly very
difficult. Therefore it appears reasonable to start with a relevant special
case where the two sets A, B are given by parametrized regular simple
differentiable curves, say A = {A(t) |t € I}, B = {B(r) | r € J}. Even
solving this more special problem in general is not casy at all because
it requires treating a global problem, namely to find the set of points
M(A B) = {z € E* | d{A,z) = d(B,z)} where the functions d(A, x),
d(B,z) describe the distance of a variable point z € R? to the sets A,
B respectively. One has to bear in mind that the global nature of the
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function d( A, x) is illustrated by the fact that small changes in r may imply
a discontinuous change in the distance minimal segment from x to A (see
Fig. 1). Hence the nearest footpoint on the set A to the moving point =
may change discontinously with x. Therefore the difficulties of finding the
points nearest on A to the moving point  are strongly influenced by the
global geometry of 4. However in order to compute the function d(A, z)
we need to solve the global minimization problem, i.e. to find the point
nearest on A to the space point z. Solving this global problem is related
to computing the cut locus of a set A. It can be shown that a segment
emanating normal from a curve (or surface} A will be distance minimal
until it meets the cut locus of A, ef. Fig. 1). This geometric property
can also be viewed as a possible definition for the cut locus €4 relative to
a given reference set A where from the segments emanate normally (see

[16], [18]).

Orbit Cut locus
{ fof A

FIGURE 1. For x € cut locus of A the distance minimal segment from
z to A changes discontinously

In this paper we do not want to discuss the global problem comput-
ing the equidistantial set of two given curves. We rather want to discuss
methods contributing to treat a local problem finding the medial curve
of two subarcs of the curves A and B. Even here we will make further
restrictions. In this paper we shall not consider the situations where the
medial curve contains focal points respective its foot points on the curves
Aor B. Also we will not discuss the (global) question if the computed
(candidate) ‘medial curve’ contains only points that are truly equidistan-
tial with respect to the considered subarcs of A and B (see Fig. 6 on page
60 for an example). The focus in this paper is on analytical tools and
the distance functions used to compute the equidistantial curve are re-
lated to two given families of normal segments {emanating from the arcs
A, B respectively) and we assume that those normal segments are dis-
tance minimal to the respective subarcs of A and B. We are essentially



presenting a differential equation tracing the medial arc by following its
tangent vector. The medial arc’s tangent vector must bisect the angle of
equilengthial normal segments stemming from the two families of rormal
segments supposed to be distance minimal to the respective sub arcs of
A and B. This concept has been considered theoretically in [16). p. 171.
The computational aspect of the concept in the Fuclidean case had been
presented in public in a skeichy way by F.-E. Wolter on a conference in
Tempe [17]. In the Euclidean case F-E. Wolter’s algorithm was imple-
mented and tested by E. Sherbrooke at the MIT Design Laboratory in
1989.

However the main contribution in this paper 1s that it goes beyond the
Euclidean case and presents analytical methods solving the aforementioned
(resiricted) computation problem determining medial curves on a surface
for two given curves on the surface. The distance is here now understood
as the geodesic distance. The main contribution is to present a differential
equation useful to trace the medial curve by following its tangent expressed
in the differential equation. Obvicusly the situation on the surface is
far more complicated than in the Euclidean plane case. Nonetheless the
medial curves tangent must still bisect the angle built by the initial vectors
of the two {distance) minimal geodesics connecting the medial curve point
with the respective surface curve arcs, see [16], p. 171. In the general
surface situation the two families of Euclidean normal segments emanating
from the subarcs of A and B are replaced by two families of geodesics
emanating crthogonally from the respective subares of A and B.

Some kev ideas in this paper had been already presented by F.-E.
Wolter in seminars in Oberwolfach [19] and Dagstuhl [20]. However these
ideas have not yet appeared in print and it was only until recently that
the joint effort of the authors of this paper lead to showing that the com-
putational methods described in this paper give indeed practically robust
techniques of high accuracy. It is quite useful to view a medial curve
respective to two given curves A, B as being obtained via intersection
points of offset curves with the same offset distance from the respective
progenitor curves A, B. In this context we refer also to [9] which studies
the computation of geodesic offsets on surfaces. Meanwhile there exist
many papers studying medial curves and surfaces in the Euclidean case.
We mention here only a few [3], [10], [18], [11], [4], [6], [2], [12], [13]. The
latter containg also an extended up to date bibliography. Quite recently
- T. Maekawa developed a method to compute geodesics joining two surface
-~ points, see [7].

i Deriving the computational methods in this papers requires some tools
~. from differential geometry. Some of these tools are classical methods
within the area of Riemannian geometry but they may however not be
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standard in the area of geometric modeling. Because of this and in order
to prosent the derivations in a complete and self contained way we include
in this paper some background material on tools from differential geom-
etry. Some of this background material is also needed to introduce in a
precise way the definitions, notations and concepts used for our computa-
tional methods.

2 Background

2.1 Elementary differential geometry

A general parametric surface S can be defined by a vector-valued mapping
from the two-dimensional parametric space to a set of three-dimensional
coordinates
riu,v) = [z(u,v),y(u,v),z(u,v))T

The mapping = is called a parametrization of the surface 5. If for every
surface point r(ug,v) = p there exists a neighbourhood p € V' C R3
and (ug,v0)’ € U C B2 such that r» : I/ — V N § is a differentiable
homeomorphism on U and the differential drg : R? —» R? is one-to-one
for every point g € U, the surface § itself is called a regular parametric
surface.

Any curve o) on S can be represented by a curve (u(t),v(¢)) in the
parameter space of the surface 5, ie.

aft) = r(u(t),v(t)).

For any parameter #o the tangent vector @'(to) can be regarded as a direc-
tion in the surface’s tangent plane at the point e(t) € S. On the other
hand: for every vector w of the tangent plane Tip(S) in p € S there exists
a curve @ on S such that e{0) = p and &’(0) = w. One may say that the
tangent plane Tp(S) at a certain point p is the set of the tangent vectors
of all curves on S passing p. Moreover, those tangent vectors are given by

a/(0) = u'(0) ru{u(0),0(0)) +¢'(0) 7 (u(0), v{0)),

where 7,7, denote the partial derivatives of the parametrization r of
S. Hence Tp(S) is a two-dimensional vector space spanned by the local
coordinate vectors v, and r,.

Many important local geometric entities of the surface can be defined in
terms of its first and second fundamental forms. Both are quadratic forms
on the tangent planes Tp(S). If we take ry, 7, as the local coordinate
system, the representation of the first fundamental form I is given by

W, v) = B +2Fu v +G @)



where

E = (ryry), F o= (ryr,), G= {r,r,)

and {.,.) denotes the inner product. The second fundamental form /7 is
given by

MW o) = L/ P +2Mu' v+ N (W)

where

Py ATy

L= {N,ry), M={Nr,., N =N r,, N =
{ ) { ) { } R

Here A denotes the cross product of R, The vector IV is called the normal
of the surface S.

In order to quantify the curvature of a surface 5 at p, we consider a
curve at) such that a(0) = p. Let ¢ := ¢(0) be its unit tangent vector
and k := k(0) its curvature vector at p. We can write k as a sum of a
normal and a tangential component, Le.

E=k,+ky = in N +r,v (2.1)

with a unique vector of unit length v € Tp(S). k, is called the normal
curvature vector, kg is known as the geodesic curvature vector (see Fig. 2).
Their signed lengths s, £, are called normal curvature and geodesic cur-
vature in direction of «'(0} respectively. Note that the signs of s, and x,
depend on the orientation of the surface S given by the normal vector V.

Ficure 2. Normal and geodesic curvature vector of a curve ex(t) on a
surface S

Now the normal curvature s, varies with each direction e’. The ex-
treme valiies Kmin and Kmee (it can be shown, that there exist two not
. necessarily distinct values) under variation of direction are called princi-

- pal curvature values. Their product K := K fimer 15 called Gaussian
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curvature and H = %(ng'n + Fmer) 18 known as mean curvature. All of
these entities can be computed in terms of the fundamental forms:

bmin = H— VTR, fmae = H+ VIR

K = LN M H = 2EM_EN_GL
EG-F" 2EC-F)

2.2 Geodesic curves

Definition 2.1 Let U C 5 be an open set of the reqular surface 5. A
map which assigns every point p € U a vector w(p) € Tp(S) is called a
vector field in U. If for a fized parametrization v(u,v) the coefficients
a,b of the representation wip) = ar, + br, are differentiable functions,
w s called o differentiable vector field.

If we consider a parametrized curve c(f) on S together with a vector
field w on S, w(t} denotes the restriction of the field to the curve a.

Definition 2.2 Let a(t) be a curve on S and w(t) be a differentiable
vector field along oo, The vector obtained by the normal projection of
(dw/dt){ts) on the tangential plane Teovuy(S) is called the covariant
derivative of w at point aity). This derivative s denoted by (Dw /di){t).

Every vector field w(t) along a parametrized curve a(#) = r{u(t), v{t)}
can be written as

w(t) = a(u(t), v(t)) ru + blult), o)) r, = alt)r,+ bt T,

Some computations yield

Dw
— = (a' +Ti au + T + Ty bu' + Ty bo')

+ (0 +Thau +Thav + T3 bu/ + T bv') rp. (2.2)
The coefficients T'¥; in (2.2} are differentiable functions of the parameters u
and v. They are known as Christoffel symbols. They may be computed
as the solutions of the following system of linear equations

THE+THF = (ry,r,) (2.38)
I‘%l F + F%l G = <'l"m“ 'r'u) -
T E+TH F={ry,r (2.3b)
LF+T4LG= rm,,n) '

>> } (2.3c)

PLE 4T3 F={ry,,r,
F%2 F+ I‘22 = {Pyy, Ty



Note that these equations have been grouped into three pairs of indepen-
dent equations each having the determinant F G — F? # (), provided the
surface parametrization r is regular. Furthermore, these equations deter-
mine all Christoffel symbols since they are symmetric with respect to their
lower indices, i.e. T% = T%,

In our context the most frequently used vector field along o will be
w(t} = a'(t). We assume that « is parametrized by its arc length. Hence
{dw/dt)(tg) = a’(tg) is the curvature vector of a and the covariant deriva-
tive yields its tangential component {see also equation (2.1}). For this
reason e

—(to) = &y (N Aa'(t)) (2.4)
holds which shows the connection between covariant derivatives and geo-
desic curvature. Intuitively De'/dt gives us informations about acceler-
ation and curvature of e as it can be seen from the surface 5 itself. In
the planar case lines as shortest paths between two points can be charac-
terized as curves without curvature. Thus one may wish to study curves
on arbitrary surfaces which have no geodesic curvature. This leads to the

following definition.

Definition 2.3 A curve (s} on the parametric surface S is called o
geodesic curve, if for every parameter s the geodesic curvature of ¥
equals 0.

Using equation (2.4) we can give an equivalent formulation of definition
2.3. Since every regular curve can be reparametrized by its arc length, it is
no restriction to assume that <y(s) is already parametrized by arc length,
ie. ||¥'(s)] = 1. Now +y(s) is & geodesic curve, if and only if

D~

) =0
¢ for every parameter sg. Furthermore, using equation (2.2) yields the es-
" sential part of the following theorem.

»Theorem 2.1 For every point p of the regular parametric surface 8 and
" every vector v € Tp(S), v # 0, there exists an € > 0 and a unigue
+ geodesic curve ¥(s) C 8, 5 € (—¢,¢) such that v(0} = p and v'(0) = v. If
“we represent v(s) = 7{u(s), v(s)) by its curve (u(s},v(s)) in the parameter
:space, this curve satisfies the system of differential equations

u” + 1 (W) + 2T v’ + T (V) =0
V' +TH (W) + 2T ' + T3, (v)? =0 |
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For a proof of the theorem, see for example [3] p. 254 or [14] p. 160.

Proposition 2.1 For every vector field w(t) along a(t) with vanishing
covariant derivatives, ||w(t)|| s constant.

Proof The assumption Dw/dt(te) = () means that duw/dt(tg)
is orthogonal to the tangential plane of 5 in af{ty). In partic-
For this reason

ular we have J
2
d

& @) = 2 (wi, Ze)) = 0
holds and ||w(t}] is constant. O

As an immediate consequence of Proposition 2.1 we get

Proposition 2.2 Every geodesic curve ~y(s) has constant tangent length.
The parameter s is proportional to its arc length.

Proposition 2.2 is of practical interest, since it states that the solution
~(s) = r(u{s),v(s)) of equation (2.5) is already parametrized by its arc
length, provided the initial values for {u',v") = (/(0),v'(0}) are chosen
such that

YO = Py + ' rf| = 1
holds. System (2.5) is transformed into a system of first order differential

equations, which can be solved numerically using a standard package such
as NAG (see [8]):

’U.I]_ = Ug
uhy = — (T} ud + 2T}y usve + Iy v3)

; (2.6)
=1

vh = — ([, ud 4+ 273, upvy -+ T3, v3)

2.3 Geodesic offset curves

It can be shown (see [3]) that any shortest path connecting two distinet
points p and g on a surface has vanishing geodesic curvature. Unfor-
tunately, a geodesic curve connecting these two points is not necessarily
the shortest join between them. For example consider p and g on the
sphere to be not antipodean. Since great circles are geodesics here, there
are two different ways to connect p and g by geodesics. As p and g are
not antipodean to each other, we have one ‘short’ and one ‘long’ geodesic
connecting them. However, the following classical result holds.



Proposition 2.3 Let p be a point on the surface S. Then there exists a
neighbourhood U C S of p, such that every geodesic~y : T — U, v(0) = p,
is the minimal join between p and y(to) € U for every ¢y € 1.

A proof can be found in [3]. Roughly speaking Proposition 2.3 claims
that geodesics are local shortest paths. For this reason the following defi-
nition of offset curves on surfaces makes use of geodesics.

Definition 2.4 Let (), t € I C R be a so-called progenitor curve on
the reqular surface S. For every tq € I we consider the point v (s). Here
vy, denotes the arc length parametrized geodesic curve emanating from
a(ty) in diveciion orthogonal to (te) requiring o (o), v;,(0), N to have
positive orientation. The set

{v.(s)[to€l}CS

15 called (geodesic) offset curve of the progenitor curve o at geodesic
distance s.

The geodesic distance in Definition 2.4 may have a negative sign. Obvi-
ously the sign of s determines whether the offset curve lies on the left-hand
side {positive sign} or on the right-hand side (negative sign) with respect
to the surface orientation induced by the surface normals. Furthermore,
the distance s can either be a constant or a function s(t} depending on
the progenitor curve's parameter ¢.

The notation introduced by Definition 2.4 must be treated with some
- care. The distance between a single offset point 74, (s) and the point set
. generated by the progenitor curve ex(t) may be less than 5. Consider e.g.
- the cylinder with radius 1 along with a meridian as progenitor curve {see
+ left half of Fig. 3). This ‘accident’ may even happen in the planar case
- (see right half of Fig. 3). In either cases the geodesic curve v,, from a(ty)
* 1o the offset point is not the minimal join from -y, (s) to the progenitor

curve.

i Proposition 2.4 The geodesic offset curve of a given progenitor curve
“at) at distance sy can be represented as a parametrized curve o, (t).

Proof Every offset point -y, (so) is the solution of system
{2.6), which itself has a differentiable right side. By Definition
2.4 the offset curve may be obtained by the differentiable vari-
ation of # (namely along a(t}) of the initial values of system
(2.6); note that those initial conditions change differentiably
with progenitor curve’s normals. By a classical result of the
theory of ordinary differential equations (see [15]) the solutions
ohtained by this variation is a differentiable function of {&. O
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’—‘/
o o
T~ Offset curve
(taken from
Offset curve L~ left branch of a)
at distance
§=i7

Fiqure 3. Global minimal join does not coincide with considered
geodesic

Note that the offset curve is not necessarily regular. For instance,
consider the curve (£,¢%) and its offset curve at distance 1 in the planar
cage. In this example the offset curve has a singular point for t = 0. This
motivates the subsequent definition.

Definition 2.5 A surface point p € 5 is colled a foeal point of the qiven
progenitor curve o, if it is a singular point of a geodesic offset curve e (t)
at a certain distance 8, t.e. a{t) = 0.

3 Offset functions and Jacobi fields

Definition 3.1 Let S be a regular parametric surface parametrized by
r{u,v) and let ce(t) be a progenitor curve. The function © : (s, 1) — (u,v)
defined by

T (O(s,1) = vls) = oslt)

is called the {geodesic) offset function on 5 with respect to the pro-
genitor curve ox(t).

By Definition 3.1 O(s,t} equals the (u,v)-parameters of the offset
points from the progenitor point «{t) at geodesic distance s. Using this
function we have a uniform tool to describe all the curves defined above
(see also Fig. 4):

r{00,1)) = aflt) {progenitor curve)
7 {(O{s,1g)) = 7v,,(5) {geodesic curve starting at ac(tp))
7 (O{s0,1)) = g, (t) {offset curve at geodesic distance sg).



t v z3 Y, (5)
O(So, f)
(Sa tD) Yo (t)
o (31,t) Y Cay (f)
O(0,1) a(t)
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FIGURE 4. Offset function O{s,t) of the given progenitor curve c{t)

Proposition 3.1 The geodesic offset function is differentiable. Its partial
derivatives 8,0 and 8,0 are given by

’Y;o(s) = {'ru, Tv) 850 (31)
o (t) = (ruarv) ' atoa (32)

50

where (ry, Ty) i the Jacobian matriz of T.

Proof The function (s, 1) describes the solutions of the
geodesic differential equation (2.5) with its initial values de-
pending differentiably on the parameters s, . Thus O(s, )
is a differentiable function. Equations (3.1) and (3.2) follow
immediately by applyving the chain rule. O

Note: by solving the system of differential equations (2.5) not only
the parameters (u(s), v{s)) of the geodesic curve =, (s) = 7 (u(s),v(s))
care computed. The derivative vy (s) = ' 7, 4+ "7, can be obtained too.
:Clearly the partial derivative 3,0 = {2/, v") is already computed by solving
_the geodesic equation. Since e, {t) can not be computed directly, we are
:not able to exploit equation (3.2) yet. In order to compute the partial
- derivative 8,0, we introduce the vector field

Ji(s) = ato) 3.3)

of the offset curve’s tangent vectors along any geodesic ,,(s)-

i Often it will turn out to be very useful to regard the given surface as
:parametrized locally by the parameters s and ¢. Given a progenitor curve
‘ax(t) this parametrization is introduced by

7(s,t) = {roQ)(s,i). {3.4)

The isoparametric lines here are the geodesic curves =,(s) and the offset
‘curves o(t) respectively. The Jacobian matrix here is one-to-one and
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given by (ry, 7)) (3,0, 8:O), provided one stays away from focal points of
the progenitor curve. Hence the parametrization ¥ is regular in & some
neighbourhood of .

Definition 3.2 Let afs), s € [0,]1] be a curve parametrized by its arc
length on the surface S. A differentiable map k1 [0,{] X (—e.g) — § such
that k(3. 0) = «ls) is called o variation of a.

Definition 3.3 Let v{s) be a geodesic curve parametrized by its arc length
on S and let h - [0,1] x (—e,2) — 5 be ¢ variation of v with the addi-
tional property that for every tg € (—g,e) the curve hy(s) = h{s,to) is
a parametrized geodesic. (Note that the curve hy,(s) is not necessarily
paremetrized by its arc length.) The vector fleld (8h/8t)(s,0) is called a
Jacobi field along .

Obviously the vector field introduced in (3.3) is a Jacobi field along
Vi, Next we give a classical result on Jacobi fields which can be used to
characterize them by an analytical condition.

Proposition 3.2 A vector field w(s) along o geodesic = is a Jacobi field
if and only if it satisfies

2

g

where K(s) is the Gaussian curvature of the surface S at ~y(s).

w(s) + K(s) (v{s) Awls) A7(s) = 0 (3.5)

A proof of Proposition 3.2 can be found in [3]. Equation (3.5) will
be the key to the method considered in this paper. Before we explain
this in more detail, we state a quite useful property of the special Jacobi
field Jy,{s) considered here, namely that all vectors are orthogonal to the
geodesics tangent vectors vj, (s).

Proposition 3.3 The Jacobi field Ji, (s} of the offset curve’s tangent vec-
tors as introduced in equation (3.3) is orthogonal to the tangent vectors of
the geodesic y,,, i.e.

(Juo(8), 73 (5)) = O
holds for all 5.

Proof Consider the parametrization ¥ as introduced in (3.4)
in a neighbourhood of ex. The coefficients E and G of the first
fundamental form with respect to the local coordinate system
T, Ty are given by

E= (o)) =1, G={a(thal(®) = o).



Since the geodesics -, (s} emanating orthogonally from the
given progenitor curve are isoparametric lines here, the second
equation of the system (2.5) yields ', (¢/)? = 0 implying 2 =
0. On the other hand

F}IE"FF% ~= (Fuu Fu) = —Js
— 3

1
2
[h F 4 T2 G = (o, 7o) = Fs — LE

holds (see equation (2.3}). Since E = 1and % = 0 we have
F%l =0= Fs. Thus

Fisg to) = Fl0,t5) = (e/(te),7},(0)) = 0

holds, as the coefficient F does not depend on the geodesic
distance s. O

Exploiting Proposition 3.3 together with a property of the cross prod-
uct, we have

(720(5) A Jtﬂ(s)) A thu H'Tio Il J‘:D <Jt0 730 )> 7;0(5)
= 'jtn( )
as the geodesic v, (s) is proposed to be parametrized by its arc length.

Hence, in the special case of the Jacobi field J,(s), equation (3.5) yields
the identity

C%Jm(S) + K(s) Jy(s) = 0. (3.6)

It we are only interested in the behaviour of the length ye,(s) = |[J+o(s)]]
© of this Jacobi field, a straightforward stmplification of equation (3.6) yields

Yoo (5) + K{s) yo(s) = 0, (3.7)
- which is an ordinary differential equation of second order.

. Proposition 3.4 Let r(u,v) be an orthogonal parametrization of a neigh-
- bourhood of the reqular oriented surface S, d.e. F'= (ry, ry) = 0. Further-
more, let aet) = r{u(t),v(t)) be a curve on S and w(t) o vector field of
unit length along c(t). If p(t) denotes the angle formed by v, (u(t), v(t))
and w(t) with respect to the given orientation,

(%20, Awlt)) = 3o (Gurf = Eurl) + ol
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A proof of Proposition 3.4 can be found in [3]. Since w{t) € Tp(S)
is assumed to be of unit length, w(t) is orthogonal to either (dw/dt)(t)
and to its normal projection onto the tangent plane. Thus (Dw/dt)(t)
must be a vector in direction of (N A w{t)). Furthermore, the value
of {{dw/dt){f), (N A w(t))) yields its signed length with respect to the
orientation introduced by the surface normal.

Proposition 3.5 For every geodesic 7y, (s) the tangent length y,(s) =
e (to)ll of geodesic offset curves along =y, (s} satisfies

Via5) = Ko so(8),

provided 7y, (s) is not a focal point of the given progenitor curve c(t).
Here, &, denotes the geodesic curvature of o at point ou(ty) = v, {s).

Proof In a sufficiently small neighbourhood of the non-focal
point -y, (s0) the surface can be considered as parametrized
by ¥ = r o €. By proposition 3.3 this is a regular, orthogonal
parametrization. The coefficients of the first fundamental form
are given by

E=1 F=0 G = {a)d®) = (u),

since geodesics can be chosen to be parametrized by their arc
length (see corollary 2.2). Along any offset curve a,(t) we
study the vector field

()
w(t) =
9= e
which obviously is of unit length. Hence applying proposition
3.4 yields
dw ,
(SN rw©)) = -, @9

with respect to the surface orientation. On the other hand the
derivation of the vector field is given by

daw 1 (el (t), al(2)}

—(t) = al(t) — S o ().

&Y Taml O el

If we compare this vector with the curvature vector k of ay,
which is given by

K = Loy - (M)

EAG A las@e ™



we observe P
w
E(t) = w(s) k(t),

i.e. the derivative of the vector field {dw/dt) equals the cur-
vature vector of e, up to the factor . (t). Since the covariant
derivative of w(t) can be obtained by normal projection of
(dw/di) onto the surface’s tangent plane, we observe

(SR Awt)) = i s,

which (together with equation (3.8)) proofs the claimed iden-
tity. [

Anather proof of Proposition 3.5 can be found in [1], p. 205. Now we
are able to solve the differential equation y},(s) = —K(5) y,(s) proposed
in equation (3.7). Once the equation is transformed into the corresponding
gystem of first order equations

y1(s) = als) } (3.9)

standard packages such as NAG (see [8]) can be used to compute y{s) =
Yi,(s) and ya(s) = yj (s) numerically. Appropriate initial values can be
achieved by

y1(0) = la/{to}ll, 3200} = —rg11(0)

exploiting proposition 3.5. Moreover, with the knowledge of the signed
length wy, () of the geodesic offset curve o, at parameter Zy, the tangent
vector o (s) is uniquely determined (see proposition 3.3). Thus, both
. partial derivatives 8,0 and 8,0 of the offset function can be achieved by
. equation (3.1) and (3.2) respectively.

4 Medial curves

. Asafirst application of the methods developed so far, we present a method
© to compute the medial curve of two border curves on the surface 5. Let
. aft), &(t) be two regular curves on the parametrized surface S. The offset
funetions belonging to these curves shall be denoted by ©(s, ) and (5(3", )
respectively. Consider the vector-valued function F : R* — IR* defined
by

F{s,t,t) = OFs,t) — Oas,t)
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where 0,7 € {—1,1} are constant signs, which controi to which side each
offset shall be computed, whilst s > 0 by convention. Furthermore, let
(50, to, tg) be a triple, for which

F(so,to, o) = 0, det (8:F (30, to, fo), &:F (s0, 0, F0)) # 0 (4.1)

holds. The implicit function theorem implies that there exists a neigh-
bourhood J C I of ¢y and differentiable functions 3,4 : J — R such
that

F(s(t),t,0(t)) = 0
holds for every ¢ € J. Let us denote the implicitly defined curve by e (t).
This is a curve in the parameter space of the surface § with the property

Oos(t),t) = mit) = OFs(t), #(t)) (4.2)
for every t € J. The corresponding curve »(m(t)) =: p(t) on 5 fulfils

Yelos(t)) = plt) = Fp(ds(t)), te

In other words: p(#) lies at geodesic distance 5{¢) to the border points ex (%)
and a(p(t)), where the distance is taken along the geodesic v, and F,
respectively (see Fig. 5). Note that these geodesics are not necessarily
global minimal joins to the given border curves, but only local minimal
paths.

3

*z
FicuRE 5. Medial curve p(t) of two border curves a(t), &%)
The condition of regularity in equation (4.1) in more detail is
det (58,0 ~ 70,0,80) #0.

Without loss of generality we can assume that this condition holds for all
t € J (maybe after reducing J). Differentiating equation (4.2) yields

(a'asé —oa,,o,até) (;) = B,0. (4.3)



Since the matrix is assumed to be regular for all £ € J, we have

! — N —
(;) = (70,0 - 00,0,0.0) ' 8,0, (4.4)
This is a system of ordinary differential equations which can be used to
trace the medial curve introduced above, provided initial values can be
found. Note that the partial derivatives of the geodesic offset functions
@, © can be computed using the techniques developed in the preceding
section.

System {4.3) becomes singular, if and only if the matrix is singular or
if the vector on the right-hand side equals zero. The latter occurs if and
only if the medial curve is marching through a focal point of the border
curve ov. For the remaining case assurme there exists a real number A such
that

70,0 — 8,0 = 23,0

holds. By muitiplying this identity with the Jacoblan matrix M= (ry, 1)
of the parametrization we get

T (7 s(t)) — a7 (o8(t)) = A8 0{0(D)- (4.5)
Since 7 7,y is perdendicular to &, this implies
(oo s(t), 07T s(t)) = 1.

Thus the angle between the tangent vectors ¢ v,(d s(t)} and “a"yfp(t)(ﬁ 5(t))
of the two geodesic curves at the medial point must be either 0 or .
Assume the angle equals 0. Then we have found two distinct geodesic
curves sharing their tangent directions at p(t). This contradicts Theo-
rem 2.1 stating that geodesics curves are uniquely determined by their
tangent direction. Consequently the angle equals m. Hence the left-
hand side of equation (4.5) yields a non-trivial vector collinear to Foatty-
Since 77, is perdendicular to &, either A = O (proofing the matrix
(7 8.0 — ¢ 8,0,8:0) to be regular) or 6‘;75(0 = 0 must hold. In the
latter case the medial curve is marching through a focal point of the &.
Altogether we have established the following result.

Lemma 4.1 The system of giﬁ'erential equations (4.3) is singular if and
- only if 5,0(s(t),t) =0 or B,0(s(t), p(t)) = 0 holds, i.e. at focal points of
© aft) or &t) respectively.

In case the two border curves ex(t) and &{f) intersect, one of these
shared surface points can be used to provide initial values of differential
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equation (4.4). An example for this case can be found in Fig. 9. If no
intersection is present, finding appropriate initial values can be regarded
as the problem of finding a root of

G(s,t) = (5(53,;‘:0) —QO{cst) = 0. {4.6)

Here the parameter £y of the second border curve is considered to be
constant. Since the partial derivatives of G are given by

G, e , 8 '

—G = 78,0 (cr $,tg) — 0 0,0 (7 5,1t and =G = —5,0{cs,t)
ds ot

the Jacobian matrix of &G is regular, provided one stays away from focal
points of the first border curve a{t). Hence a Newton method

Sivr Y _ f S} _ 2@(5. ti) EG( i Bi) _IG i ti)
tiv1 /7 \ & fs o b g b (o0t

can be used to approximate a root of G. Of course, any modified New-
ton method (typically included in standard packages such as NAG (see
[81}) can be used instead. However, most of these methods require the
computation of the partial derivatives of G which are accessible with the
methods presented here.

One may get some surprising perhaps unexpected results by this strat-
egy. Consider the example in the Euclidean plane given by Fig. 6. Here

Fioure 6. Problems in finding initial medial points

parameter £ along with the corresponding distance s; provides a root of
equation (4.6) as well as (s1,%) does. By drawing the corresponding cir-
cles with center p(ty) and p(t;) and radius s, and sy respectively it is
quite obvious, that p(ta) does not belong to the equidistantial curve of
the {global} arcs of o and & whereas p1(¢,) does. The reason for this lies



FiGure 7. Medial curve on a wave-like surface

Figure 8. Corresponding curves in the {(u, v) parameter space
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in the global shape of curve a(t). However, p(ty) can also be considered
as o point on the equidistantial curve defined with respect to two subarcs
of o and &, each contained in a small neighbourhood of ats) and alto)
respectively. Therefore, even in this case the algorithm yields locally a
geometrically correct result. Clearly it depends on the choice of starting
values for the Newton method which of the roots (if there are more than
one) is approximated.

Figs 9, 10, and 7 and 8 visualize two results obtained with our algo-
rithm. Our implementation uses a Runge-Kutta-Merson method for mte-
grating the medial differential equation (4.4) and Adams method for solv-
ing the Jacobi system (3.9), both routines taken from the NAG package
(see {81} The considered surface in both cases is given by the parametriza-
tion (u,v, sin{u) cos(v)) over the parameter space [0,27] % [0,27]. The
first example (Fig. 9) deals with progenitor CUrves that intersect each
other five times. Therefore one of the outer intersection points was used
as a starting point for tracing the medial curve in the parameter space.
The remaining intersection points were passed during the process with an
accuracy of about 1077, Fig. 10 the corresponding representation of pro-
genitor curves and computed medial curve in the {u,v) parameter space
are shown.

In the second example two different border curves on the same sur-
face were copsidered, now without any intersections. In order to get a
first estimation of the numerical behaviour, for every approximated pair
of geodesic distance 3{to) at which the medial point lies and corresponding
parameter o(ta), the following test was carried out. We numerically solved
the system of geodesic differential equations (2.6) for both border curves
o and & at parameters to and 1, respectively and geodesic distance s(to)
each. This yields an approximation of the parametey values (ug,vo) and
(o, To) of 1o (5(t0)) and ’f?‘p(to)(s(t@)) respectively. Ildeally these points
would coincide since they are supposed to be medial points. Therefore
the difference vector {ug — Uos Vo — Tg) was considered to check the accu-
racy of our results. In the example shown in Fig. 7 no errors worse than
10~ occured using this test {all computations have been done in double
precision arithmetic).

5 Focal curves

As mentioned above the set of focal points plays an important role when
geodesic offset curves and medial curves are considered, since they become
singular if and only if they pass a focal point of & progenitor curve. Hence
one of our current interests is to study the set of focal points in more
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FicURE 9. Medial curve on a wave-like surface

" F1GURe 10. Corresponding curves in the (u,v) parameter space
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detail. Below we will give a brief summary of the results we were able to
derive so far.

The crucial part in tracing medial curves is the computation of ;O
of the offset function (see section 4), We manage to achieve this par-
tial derivative by solving the Jacobi differential equation (3.7) which is
transformed into a system of first order differential equations (see (3.9})

(e _(  w
Y= (:ua(s)) (—K(s,nyl(s))' o

The independent variable of this system is the geodesic distance s. How-
ever it has an additional parameter £. For this reason we will denote the
left side of this system by Y (s,) = Y.(s}. The solution of this system

yields
y:(8) y(s.t) )
Yi(s,t) = = .
(5.0 (yé(S)) ((%y(&t)

In the sequel it will be important o be able to compute the partial deriva-
tive %y(s, t) as well. Exploiting the differentiable dependence on both
parameters s, t, the theory of ordinary differential equations justifies that
we can use the linearized system of Jacobi’s equations (5.1) and linearized
initial conditions in order to obtain the wanted partial derivative of y(s, 1
(see [15]). For those computations we introduce the system of ordinary
differential equations
d. =

a—swl(so,to) = 29(50: to) (5.2)
adg?fz(so, to) = — K (s0, o) 21{80, o) — %K(Sosto) (0. to)

A solution Z(s,8) = (z1(s,1), 22{s, 1)) of equation (5.2) has the property

éi

Z2y(s0, to)

Zisato) = | O (5.9)
. to)

my(soa 0

Appropriate initial values for this system can be found using proposition

3.5

2(0,8) = %y(o, t) = “’62’{5’]@
2(0,%) = %%y(o,t) = ‘{gfﬁg(o‘ﬂy(&tH%(W) gfy(o’t)}

(5.4
where a(t) is the underlying progenitor curve. Note that the partial
derivatives of the Gaussian curvature 2K in equation {5.2) and of the



geodesic curvature %r;g in (6.4) are needed here. Since both formulas

tend to be very large and their derivation is rather technical they shall be
omitted here.

Let us now consider a focal point at parameter ¢y of the given progen-
©itor curve a(f), t € J. We assume that the focal point lies at geodesic
- distance so. By Definition 2.5 the tangent length of the offset curve o, (t)
at 1o equals zero, i.e. y(se,tp) = 0. Since y satisfies the Jacobi equation
¢ (3.7} and is not identical to zero (ctherwise the progenitor curve would be
singular at parameter #g), we have

a
y(s0,t0) = 0, %?J(Snato) = yi,(s0) # O

for every focal point of the progenitor curve. Using the implicit function
theorem, the equation y(s(f),f) = 0 can be solved to give a differentiable
real-valued function s(t) in a neighbourhood J < I of #,. Moreover,
ggy(s(t}, t) # 0 holds for all £ € J. Applying the chain rule yields

a

B (s(0,8) = y(s(8),0)5(0) + mry(s(),

Hence the ordinary differential equation
ﬁﬂH_%mmM)
Zy(s(t),t)

valid for all ¢ € J. The partial derivatives in equation (5.5) can be
computed using the Jacobi equation (3.7) and equation (5.2} from above.
: The concept outlined appears to be quite promising in order to trace
:the focal curve of a given progenitor curve a(t) by interpreting the tangent
ector {8'(), 1) in the (s,t) parameter space. Details on the derivation of
differential equation (5.5) along with a description of future numerical
‘experiences will appear elsewhere.

6 Conclusions

1 this paper, we introduce a method for tracing the medial curve of
o'given analytic border curves on an arbitrary regular surface. First
'ur_ne_ri_cal experiments convinced us that the algorithm yields good results.
1.the examples considered so far an accuracy of about 10710 appears
o be feasable. Future works will deal with numerical error estimations
s c__cihsequences on feasible geometric accuracies.
s-stated above, the method is useful in the planar case too. Here
eodesic lines can be replaced by the progenitor curve’s normals and the
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length of their offset curves can be computed explicitly. Thus the compu-
tational cost of the algorithm can be reduced enormously. On the other
hand, many of the phenomena (e.g. focal points, ‘medial points’ that are
not equidistantial to the border curves) presented in this paper may even
oceur in the Euclidean case. For this reason (and of course, because there
are many obvious applications in the planar case) we currently work on
this as a special case.

Provided the algorithm is initialized with a medial point which is truly
equidistant to the border curves (i.e. the global geodesic distance from
this peint to both border curves equals the considered one), then usu-
ally {exceptions are rare but possible) the equidistantial set is traced with
the method described above in some neighbourhood of the starting point.
Therefore the considered method can be a useful tool to trace the equidis-
tantial set locally. Obviously some global problems remain to be solved
before an algorithm for computing equidistantial sets or medial axis can
be formulated which is based on our method.

We have shown that the considered differential equation becomes sin-
gular if and only if the medial curve passes a focal point of one of the
border curves. It is crucial for global distance computations that a mini-
mat geodesic segment will not be distance minimal after passing its related
focal point'. These are some of the reasons why the study of focal curves
is of certain interest. We sketched out how the Jacobi vector field and the
computation of its variation in length can be used for tracing the focal
curve as well. Although the mathematical formulation is valid, mumerical
experiments are needed in the future to prove the concepts outlined here
to be useful from the computational point of view.
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