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Preface

If one moves starting from some point p on a normalized
geodesic c(t) in a Riemannian manifold, then it is a

very natural question: "How long is this geodesic a mi-
nimai)join to the starting point?" If there exists a finite
number s := sup {t/d(p,c(t))=t} then c(s) is called a

cut point of p with respect to c(t), d(,) being the
distance in the Riemannian manifold. The union of all

cut points of p with respect to all geodesics starting in
p is called cut locus Cp of p. The concept of cut locus
with a very similar notation "ligne de partage" goes
back to H. Poincaré [57]. However, prior to [57] the con-
cept of cut locus occurs at least implicitely in a paper

of H. von Mangoldt [47].

Since the fundamental articles of S.B. Myers [55] and J.H.C.
Whitehead [74] it is well known that the cut locus of a
point can be viewed as a geometric natural glueing seam
where a cell is glued to the manifold. Or vice versa the
manifold is got by attaching a cell to the cut locus.

Hence the ¢ut locus of some point contains the topological
complexity of a Riemannian or more general of a Finsler
manifold. Therefore since those basic papers of Myers and
Whitehead the cut locus has been an important tool and

also an object of many investigations in Riemannian geometry.
We mention here only few names H. Rauch [58], M. Berger [14],

W. Klingenberg [40 ], [41 ]. A good survey for the literature

1) Minimal join means a shortest path joining the points.



until 1966 is provided by the article of Kobayashi [44 ],
see also chapter 5 in the book of J. Cheeger and D. Ebin

[ 25 ]. Further we mention the work around the Blaschke-
conjecture, see e.g. [15] and [32]. See e.g. T. Sakai [60]
and M. Taksuchi [67] for investigations on cut loci in
symmetric spaces. The recent survey article of T. Sakai
[61 ] contzins many references for articles related to
cut loci. For questions on the triangulability of cut
loci and differential topological aspects, see e.q.

[311, [700 , [19]. There exist. also articles studying
cut loci of submanifolds see e.g. R. Thom [68]. Pinally
we wish tc mention the recent work of E. Kaufmann on cut
loci of knots [37]. There exist applications for cut loci
{under the name symmetric axis) in the theory of pattern
recognition, see H. Blum [18]. Via the concept of Maxwell
sets there exist relations between cut loci and physics,

see R. Them [69 ], [68].

In this pazer we treat a different topic. In the center
of our considerations are bordered Riemannian manifolds.
We view bordered Riemannian manifolds as metric spaces
with an interior metric in the sense of W. Rinow, see § 2.
The distance between any two points is defined as infimum
of the lencths for all paths joining those points, where
the paths must be contained in the bordered manifold.

The boundary has here the effect of an obstacle. Minimal
joins may hifurcate at boundary points. Therefore even

very elementary problems concerning regularity and local



uniqueness of locally shortest paths are here not so

easy to solve. In general we do not have here a global or
only a local exponential map. We meet new problems and
new phenomena, see§ 3,§ 1, § 6. Nonetheless it is yet
possible to prove some results for cut loci in bordered
manifolds and just this is the main intention of our
paper. A detailed summary of our results is given in the

introduction in § 1.

In § 3 we discuss several definitions for the cut locus
of a closed set in a bordered manifold M. We say that a
point p € M~(OM y A) is contained in the cut locus CA
of a closed set A if there exists a minimal join from A
to p which cannot be extended as a minimal join beyond p.
The cut locus CA of A is then defined as the closure of
all such points. We prove in § 3 under weak regularity

1)

assumptions for the Riemannian metric as well as for

the boundary 8 M, that the complement of CA in

M~(@M U A) is the maximal open set in M ~(3M U A)

where the distance function d(a,.) is C1—smooth. This
yields as corollaries characterisations of the cut locus
in unbordered manifolds. By the absence of an exponential
map we are forced to find a way to "simulate conjugate
points" in the cut locus. This leads us also to the con-
cept of what we call "Lipschitz point". For this, we
study points g € M ~( 9M y A) which have the property

that there exists a minimal join from g to A which can be

extended as a minimal join beyond g. Such a point is called

1) We assume the Riemannian metric to be Lipschitz continuous.



extender relative to A. We prove in § 4 that a point g
being an extender relative to A can be characterizeéd as
follows: "The initial vector of a minimal join from g

to A differs from the initial vectors of those minimal
joins going from the points in a neighbourhood of g to A
by a difference which is controlled by a Lipschitz con-
dition."In § 5 we apply the results of § 3 and § 4 to
prove some partly well known results. We give a new proof
of Jacobi's theorem, which says: "A geodesic is not any
longer a minimal join after the first conjugate point."
We show in § 5 that our concept of cut loci is a natuf&l
frame for results of Federer, Bangert, Kleinjohann and

R. Walter ccncerning EFP-sets. As an illustration of the
results and methods in §§ 2, 3, 4 we study in § 6 cut loci
in bordered surfaces. Here we make only weak assumptions
for the boundary. Namely we assume that the boundary
consists of locally rectifiable curves. We investigate
closed bordered subsurfaces of an unbordered, simply con-
nected, ccmplete two-dimensional Riemannian manifold M,

M without ccnjugate points 1). We prove that a subsurface
S of M is simply connected iffthere exists a point p € S~ 38
such that Zor the cut locus Cp of p is Cp N (S~58) =¢

or iff for all p € S is Cp = @. This holds iffany two points in S

1) In other words M is diffeomorphic to R2 and M is com-
plete and has no conjugate points,



can be joined by a unique normalized minimal join, or
iff for all p € S the distance function d(p,.) is
c'-smooth on § ~ (3s U {p}) or iff there exists a point
p € S ~ 3S such that d(p,.) 1is C1—smooth on

S~ (38 U {p}). In case the ambient space M has nowhere
positive curvature and if the subsurface S is iso-
topic to a circle, then the cut locus Cp of every point
p € S is homeomorphic to one of the intervals [o,11,
(0,10 and €~ 25 is c'-diffeomorphic to 10,11.

Here Cp is homeomorphic to [0,1] if S is compact.

We hope that it will not cause any confusion that we
do not use the standard methods from Riemannian geome-
try like Jacobi fields and comparison theorems. We

use mainly elementary local analysis on an open set

in the chart space corresponding to a neighbouihood in
the Riemannian manifold. There we make estimations of
the Riemannian distance in terms of the Euclidean metric
induced by the local coordinates. We also identify
tangent vectors with vectors. Therefore we estimate

the difference of theose tangent vectors in the Euclidean

norm induced by the local coordinates.



In 1978 we started to work on questions related to the
topic of this paper, see [75] p. 52. In those days

as far as we know. there was only a group of mathematicians
at the University of Illinois (Urbana) working on

similar questions. This group in Urbana includes S. and

R. Alexander, J.D. Berg and R.L. Bishop, see [ 2], [3 1,

[ 41, [ 51, [12], [13]. Meanwhile also from other people
there have come many new important contributions tc this
field. In particular there have come contributions “rom
V.I. Arnold in Moscow, {6 1, [ 71, [8 1, [9 1, [10],

and there have come contributions from a group of analysts
in Pisa including E. De Giorgi, A. Marino, D. Scolcozzi

and M. Tosques [48], [24], [48], [491, [62], [63]. In our intro~
duction we shall give more details on those articles.

Among the contributions mentioned above the work of the
group in Urbana has probably the closest relations <o

the problems treated in this paper.

The author takes pleasure in expressing his hearty thanks
to D. Ferus for supporting this work and for numerous help-
ful suggestions. In particular his suggestions have led

to much clearer presentations of Lemma 4.1 and it's proof
and of many other results in § 4. D. Ferus has alsc pointed

outa serious gap in a previcus version of theorem 4.5. At this place
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the author also wishes to thank the above mentioned ma-
thematicians in Illinois and Pisa for invitations to
Urbana (1979) and to Pisa (1983). We also wish to thank
K. Leichtweiss for an invitation to Stuttgart (1982) and
D. Koutroufiotis and E. Kaufmann for several encouraging

conversations.




§ 1 INTRODUCTION

Summary of results and related work of other authors

Manifolds with boundary have been subject of intense
research by topologists during the last decades. Not much
has been written down concerning Riemannian structures

and the associated distance geometry in bordered manifolds.
We think that the concept of interior metric as developed
by Busemann, Rinow et al. is a canonical frame for the
investigations of bordered Riemannian manifolds. Precise-

ly we mean the following:

Let M be an n-dimensional bordered submanifold of an n-
dimensional unbordered complete Riemannian manifold M.

We assume that the boundary 9M of M is an (n-1)-dimensional
topological submanifold in M. Defining the distance between
two points p,g in M by

d(p,g) := infllength ¢ / ¢ a rectifiable path in M from

p to gl we require (M,d) to be a complete, locally com-~
pact metric space. Now (M,d) is a space with an interior
metric in the sense of Rinow, see § 2, remark 2.1.

Further since (M,d) is assumed to be locally compact

and complete any two points in (M,d) can be joined by a
distance realizing path, see [77] p. 81{ Let us call such

a space (M,d) a space of type (I'). Note we viéw here a
boundary component as an obstacle. The shortest path forc-

ed to stay within the bordered manifold may bend around

1) See also [5%8], p. 141.



the obstacle. Hence the geometry of the shortest path is
greatly effected by the inflections at the obstacle.
Therefore the topic described here is in the literature
also called: Riemannian Obstacle Problem, see [5 ], Problems
of By-Passing Obstacles [10l, p. 63, Geodetiche con ostacolo

[ 48]. Investigating shortest paths and the intrinsic
distance function we try to show that the classical con-
cept of cut loci carries over in a reasonable way to
Riemannian manifolds with boundary and can serve as a
useful instrument to study relations between geometrical
and topological properties of certain bordered manifolds.
Thinking of the adeguate transfer of those elementary
concepts like cut and conjugate points into a situation
where the classical proof technics do not work any longer
gave us two by-products. First we get within our setting
o0ld and new results valid and perhaps interesting also
for unbordered manifolds see §§ 3, 4, 5. Second and per-
haps equally important we are led to new insights of
those concepts we tried to transfer. We mention here as
an example a special case of theorem 5.2: "A geodesic start-
ing in a point p is no longer minimal after a conjugate
point g." Proofs :of this classical theorem due to Jacobi
seem always to rely essentially on variation technics
along the whole geodesic from pto g. In our setting this
result is proved without variation technics using merely
local considerations in any sufficiently small neighbour-
hood around g. It turns out that for this result and for

results on the regularity of the distance function in § 3



and for all results in §§ 4, € and most results in § 5

it is only important how the geodesics arrive locally at
the end points and it is irrelevant that those geodesics
say during all their way are solutions of a differential
equation. This observation is crucial for our work here.

Namely in a bordered manifold the locally shortest paths

henceforth also called geodesics show a branching be-
haviour when they come into contact with say concave
boundary. Therefore in our situation we are forced to
drop the assumption that the geodecis during all their
way are solutions of the geodesics differential equation
related to the Riemannian metric in M or even more that
the geodesics can be described by an expontential map.
In contrast recall that the usual proofs for the regu-
larity of the distance function exploit say roughly the
differentiable dependence between solutions and inital
values of the related differential eqguation. Therefore
there one needs the minimal geodesics to be solutions

of the geodesic differential equation during all their
way. An application illuminating the just mentioned
insights is the following result,a special case of theo-
rem 6.2: "Let (M,d) be a simply connected, closed sur-
surface of the Euclidean plane, 3M consisting of local-
ly rectifiable paths. Then for any p € M the distance
function d(p;.) is Cl-smooth on M ~ M U {p}) and has a

locally Lipschitz continuous gradient there."
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Next we try to describe some insights contributing to
understand the background of the following result proved

by us in [76] Lemma 2: "For any complete unbordered Riemannian
manifold M and any point p€ M, the points with at

least two minimal joins to p are dense in the cut locus

Cp of p." Our proof of Lemma 2 in [ 76] using the invariance
of domain theorem together with a geometric construction

relied on the continuity of the map
s : {x | xe TPM' |xi=1} » [0,=] .
S(x) :=sup { « € R | d(p, eXPp(uX))=:G}

{0, »]1 the one point compactification of the intervall
[0,»[. That proof was topologically motivated and we
always preferred a topological interpretation of lemma 2
in [76]. For a compact manifold this interpretation can be
condensed in the following lemma 3a.1' in § 3a:

"Let M be a compact bordered or unbordered topological
manifold, f: D n -+ M a continuous surjective map,

f injective on D ~ 3D . Then the proper identification
points of the map f i.e. the points g € £(D) with

2) card f_1(q) > 2 are dense in the glueing seam £(ED)",
We view here f£(3D) as the glueing seam where the disc D
via identification on its boundary is glued to become

the manifold M.

In our interpretation of lemma 2 in [76] the exponential

1) D= {xe &'/ |x| <1}

2) card f_1(q) being the number of points in f-1(q).



map expp is closely related to the above map f in

lemma 3a.1', and the cut locus of p corresponds to f(3D).
For compact M Lemma 2 in [76]

is an immediate consequence of the mere topological lemma
3a.1'. We believe that from a view point of global dif-
ferential geometry the topological cut locus interpre-
tation in a sense close to lemma 3a.1' is possible in

a natural way also in bordered manifolds. Now we
describe our intuitive geometric understanding of the
cut locus in the following partly physically motivated
heuristic concept which we use to prove results and
motivate conjectures:

"In a bordered manifold where in general no globally
defined exponential map exists we can take (as well as
in the unbordered case) as cut locus the points where

1)

the distance wave fronts (relative to some source

set) have self interference. Even here it seems possible 2)
to interpret the cut locus of a point 3) as a geometric
natural glueing seam where a homotopically simple (per-

haps even a cell-like space is glued to become the mani-

fold."

1) These are the level surfaces of the distance function.

2) At least in a large class of examples including bordered

surfaces.

3) If A is an appropriate subset of M the analogue of this
heuristic roughly says that A is in M a deformation

retract of M~ Cp.



We discuss in § 3 several partly different definitions

for the cut locus which seem to fit into the just men-
tioned distance wave heuristic. Those definitions agree

in unbordered manifolds for the cut locus of a point

or for the cut locus of a C2-smooth submanifold.

With those definitions we get various results

valid also for unbordered manifolds

and some of them seem to be new even in that
case, see e.g. theorem 3.1 and theorem 4.1. However, despite of
those surprising analogies, partly caused by the common
distance wave concept, desribed above, the investigation

of geodesics and cut loci in bordered manifolds turns

out to be much harder than in the unbordered case.
"Classical differential equation techniques cannot suf-
fice for the obstacle problem. No matter how smooth the
obstacle, we cannot assume the geodesics are C2; they

are not in general, governed by a second order differential
equation with Lipschitz conditions. Moreover, each geo-~
desic is the union not only of boundary and interior seg-

ments, but also of a set of points which lie on no non

trivial boundary or interior segment. This set can have

1)

positive measure."

The main reason for these difficulties here is that we may
have branching of geodesics, when they meet the boundary.

In particular just because of that branching behaviour geo-

1) Quoted from [ 517.
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desics are in general not globally determined by their ini-
tial direction. Therefore as already mentioned we have
here in general no exponential map of a point oppose to
the situation in unbordered manifolds. In addition there
occur new phenomena, For instance the cut locus relation
for any two points need not to be any longer symmetric,
see § 3 p. 50 . The topological classification of the
complement of the cut locus Cp of some point p in a com~
pact manifold with dimension larger than two seems to

be a difficult problem. In the following part of this
introduction we explain the structure of this paper and

describe our main results.

In § 2 we present some basic results concerning existence
and gegularity of geodesics in bordered manifolds. Those
results are used in the other paragraphs of this paper.

In § 3 we formulate definitions for cut

loci, prove regularity properties of the
distance function and give related characterisations for
cut loci. Those characterisations hold under weak regu-
larity assumptions for the Riemannian metric and for the
boundary oM.of M. They include as special cases known cha-
racterisations of the cut locus of a point in an unbordered
manifold. We give now a summary of the results in § 3.

Let A be a closed subset of a space (M,d) of type (I). In

order to characterize cut loci we introduce:



Definition 3.1: A point g€ M~ M is called extender

(relative to A) if there exists a non trivial minimal join

from A to g which can be extended minimally beyond g.

Definition 3.1': A point g € (M ~3M) is called non-

extender (relative to A) if there exists a minimal join

from A to q which cannot be extended minimally beyond g.

The statements in definition 3.1 and definition 3.1' are
mutual negatiéns. Therefore one can add without changing
the content that in both definitions the statements there

must hold for all minimal joins from A to the point g.

Defintion 3.2: A point g € M~ dM is called pica (rela-

tive to A) if g has at least two minimal joins to A with

distinct tangents at q.

We. discuss in § 3 four definitions for the cut locus. The

most important one of these definitions is

Definition 3.4.I: The cut locus of some closed set A is

the closure of the set of all non-extenders relative to

A. We denote this cut locus of A by CA'

This definition (as well as the other definitions) seem
to fit into the above mentioned distance wave heuristic.

This is made plausible by the next theorem. "

1) See also figure 3.1 on p. 43.



Theorem 3.1: If the Riemannian metric is locally Lipschitz
continuous, then the cut locus CA is the closure of all
picas relative to 2 and M~{(3M UA U CA) is the maximal

open set in M ~(3M U A) where d(a,.) is c1-smooth.

If the Riemannian metric is C1’1—smooth then theorem 3.1
yields :

Corollary 3.2: If 3M = ¢ then M~ CA is the maximal open
set of points with a unique minimal join to A and equi-
valently CA is closure of all points with at least two

minimal joins to A.

In the special case that the set A is a single point, corol-
lary 3.2 gives characterisations of the classical cut lo-
cus. This special result has been proved by Bishop in [17],
by Klingenberg in [42], by the author in [ 76] under istronger
regularity assumptions for the Riemannian metric. Even

in case of a C -smooth Riemannian metric corollary 3.2

is out of reach for the methods employed in [ 171, [42],

[ 76] because they all rely essentially on the existence

of an (at least continuous) exponential map. Such a map

does in general not exist for an arbitrary closed set A

in an unbordered complete Riemannian manifold.

We prove in theorem 3.2 a sharpened version of theorem 3.1
for manifolds which are locally C1—diffeomorphic to a con-
vex set in R". Further we prove in corollary 3.3 some kind

of generalized Gauss Lemma.



In § 3a we prove the Glueing seam Lemma 3.al mentioned

above on page 14.

In § 4 we study non-extenders. Note we do not use the
standard methods of Riemannian geometry like Jaccbi fields

and comparison theorems.

A classical result for the cut locus Cp of a point p in
an unbordered complete ¢” Riemannian manifold can in our
terminology be expressed as follows:

1)
"If a point g € Cp is not a pica relative to p, then
g must be a conjugate point relative to p." Hence the
point g must be a singular value of the exponential map
expp. As already said above in our situation in bordered
manifolds an exponential map is in general not available.
Nevertheless analysing how minimal geodesics arrive in a
neighbourhood of a point g in the cut locus where g is
not a pica we find a way to simulate those "singular values”
of the exponential map. See in particular (1), (2),and (3)
below. Vice versa considering points that are neither con-
jugates nor picas we are led to the concept of Lipschitz
points.
From nowon let the underlying Riemannian metric be always

¢ -smooth.

1) This can also be stated as follows: "If g is a non-ex-
tender but not a pica relative to p, then g must be a

conjugate point".



Definition 4.1: 2 point g €M ~@M U A) is called a

Lipschitz point relative to A if there exists 'a number

L such that in some chart Iéq - cal < L d(q,q) with
éa the tangent vector at § of any normalized minimal
joint from g to 2, |.| being the norm related to the

chart.

The subsequent theorem 4.1 is a simplyfied and weakened

version of our mzir results in § 4.

Theorem 4.1: A pcint g € M~ (M U A) is an extender

relative to A iff ¢ is a Lipschitz point relative to A.

This yields immeciately with the notation used in defini-

tion 4.1: "If there exists a sequence q, with limqn =q

o
such that
dlg , q )
(1) lim —2 B _ 9o
[ ]
% o

then 9 is a non-=xtender.

Crucial in the procf of theorem 4.1 is the following
lemma 4.1 which together with (1) above and theorem 4.6
below explains our use of the phrase "Simulation of cer-
tain singular values of the exponential map." To formu-
late lemma 4.1 we need first the subsequent

quantitative version of definition 4.1.
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Definition 4.2: A point g € M ~ 3M 1is called e-extender

relative to some closed set A if there exists a non-trivial
minimal join from A to g which can be extended minimally

by length € beyond g with the extension contained in M ~ 3M.

Lemma 4.1: Let 9, €EM~3M and let r > O be such that
Br(qo) is contained in a domain of Riemannian normal co-
ordinates with center dg- Then there exists 60 > 0 and

for every ¢ €]0, Eo[ a number B > O such that the following
holds:

If Ac M is closed and g € Br(qo) is an e-extender with

respect to A then

(2) alq,q) > 8
d(cq(e), Ca(ED

1)

for all QEBE (@) if By (@ NA=9
2 2

Theorem 4.6: Let A be any closed subset of M, let g be

any point in M ~ (A U3M) and let qn be a seguence of

points with 1lim d(qn,q) = 0. If there exists some s, > o]
such that
~
cq [o, sO].CI M (dM U A) and
dlarqy)
(3) lim =0
d(cq(so), g (so»
n
cq(s), cq (s) normalized minimal joins from g, q, to A,
n

then g must be a non-extender relative to A. Thus g is a

non-Lipschitz point by theorem 4.1.

1) We derote by cq(t), cz(t) normalized minimal joins from g, g to A
respectively. ° '
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In § 5 we apply results of § 3 and § 4 in order to derive
several theorems. Some of these theorems are well known.
However, giving new proofs for these theorems I want to
show that the technics used in § 3 and § 4 which we
originally developed to investicate cut loci in bordered
manifolds give also a common frazme for results of Jacobi,
Bangert, Federer, Kleinjohann ard R. Walter which belong
to appearently different topics. Let A be any closed set
in (M,d). The combination of theorem 3.1 and a sharpened

version of one direction in thecrem 4.1 yield:

Theorem 5.1: The gradient of the distance function d4(a,.)

is locally Lipschitz continuous on M > (CAlJ aM U A).

Using that the Gauss-Bonnet thecrem has been proved under
weak regularity assumptions cf. [38] p. 343 , theorem 5.1 makes it
possible to apply the Gauss-Bonnzst theorem to pieces of

2)

distance hypersurfaces relative to A which do not meet

CAlJ aM UA.

Using theorem 4.1 we give 2 new proof of a well known

theorem i.e. the subsequent thecrem 5.2 a special case

of which is a famous result of Cacobi, see [16] p. 231.

All proofs known to us for theorem 5.2 as well as for
Jacobi's theorem use second variation and index form technics,

while we do not use these methocs here.

1) See in particular [38] 3.7 Sztz and cf. theorem 5.7 in

this paper.

2) i.e. level surfaces of the distance function d(a,.).
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Theorem 5.2: Let A be a C2—smooth submanifold of an
n-dimensional unbordered Riemannian manifold. Then any
geodesic starting {(vertically) in A does not minimize

the distance to A beyond the first focal point.

In [29] Federer investigates in Euclidean space a class
of sets which enjoy the so called unique footpoint proper-

ty. Any closed set A has the unique footpoint property

if there is a neighbourhood U(A) of A such that for every
point g € U{(A) there exists a unique point £{(g) of A closest
to g. This map £ : U(A) - A is called metric projection.
Federer calls sets with unique footpoint property sets

of positive reach. Prior to [29] a similar concept had

been studied by Durand [27]. Bangert, Kleinjohann und

R. Walter investigate sets of positive reach in Riemannian
manifolds, see [111, [391, [38], [71]. Following Bangert
and Kleinjohann we call a set with local unique footpoint
property shortly "EFP-set". All convex sets and all sets
with Cz—smooth boundary belong to this class, see [11].

In Riemannian geometry EFP-sets are important for the
investigation of convex sets, see [72] and [39]. Using

the concept of cut loci we give now a simple characteri-

sation of EFP-sets.

Theorem 5.7: A closed set A in an unbordered complete
Riemannian manifold is an EPF-set iff there exists a neigh-
bourhood U of A such that U does not meet the cut locus C

A
of A.
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Using a result of V. Bangert [11] we find:

Corollary 5.9: If a set avoids locally its cut locus
1,1

then this property is invariant under C -diffeomorphisms

and is independent of the Riemannian structure.

Further we get the following result of Federer and R. Wal-
ter the most general version of which is due to Kleinjohann
[391:

Corollary 5.10: If A is an EFP-set in an unbordered Riemannian

manifold, then there exists an open set U containing A such
that the metric projection &£: U~A > A is locally Lipschitz

continuous.

The subsequent theorem being the last result in § 5 descri-
bes mainly for a certain class of manifolds some simple re-
lations between the number of isclated points in the cut

locus and topological properties of the related manifold.

Theorem 5.11: Let A be a closed bordered n-dimensional C2-
smooth submanifold of an unbordered n-dimensional complete
Riemannian manifold M. Let NA := {ge M~A / d(a,.) not

differentiable in g} .and denote by JN the set of iso-
A

lated points in N,. Let i be the number of points in

1) NA]
JN and let k € N U{»} be the number of connected compo-
A

nents of JA. Then the following statements are valid:

a) We have k > IJN [.
- A

1) N denotes the set of natural numbers.
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b) Let us assume now that k is finite. If \JN | >k then
A
M\ A is diffeomorphic to the union of k disjoint
open unit discs and 8A is diffeomorphic to the union of

k disjoint unit spheres.

c) If NA = ¢ , then (M~A) U3A is diffeomorphic to

the exterior normal bundle over A.

d) If A is a single point p and if lJN | > 1 then M is
P
homeomorphic to the n-dimensional unit-sphere.

As an illustration of the results and methods of §§ 2, 3,

4 we study in § 6 the cut locus of special bordered sur-

faces.

Let M be an unbordered, camplete simply comected two-dimensional Rieman-
mian manifold without conjugate pointsj)We call such a manifeold

M a space of type (%*). Let S be a closed topological sub-
surface of a space of type (*) and assume 3S contains only

locally rectifiable curves.Then we call S a space of type

(%) .

Theorem 6.1; Let S be a simply connected subset in a
space of type (#). Then any two points of S can be joined

by at most cne shortest normalized path contained in S.

We have the following characterisation of a large class

of simply connected bordered subsurfaces in a space of type (#).

1) In other words M is diffeomorphic to R2 and M is com-
plete and has no conjugate points.
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Theorem 6.2: Let S be a space of type (#%). Then the fol-

lowing statements are all equivalent :

a) The subsurface S is simply connected.

b} There exists a point p in S with Cp\~BS = @, Cp the
cut locus in S of the point P.

c) For all points p in S is Cp =¢.

d) There exists a point P in S such that the distance func-
tion d{p,.) is C1—smooth on S ~(@s U{ph.

e} For all points p in § is d(p,.) C1—smooth on
S~ (s v {p}) and has a locally Lipschitz continuous
gradient there.

f) Any two points of S can be joined by exactly one shortest

normalized path eontained in S.

g) Any two points of S ~ 3S can be joined by exactly one

shortest normalized path contained in §.

Theorem 6.3 gives a detailed description of the cut locus

C{p,q} of two distinct points p,q in a simply connected space S

of type (##). Some part of that result can be described as follows:
The cut locus C{p,q} is a one~dimensional topological
submanifold of § and c{p,q} is homeomorphic to one of the
following intervalls 10,11, [0,11, [0,1]. Further

~ 9S8 is a C1—smooth submanifold of M and C

C{p'c} { ,q} ~ 38

is C ~diffeomorphic to R 1). A point X € § is contained

in c{p,q} if there exist two minimal joins gp, gq going
from x to p,gq respectively with gp n gq ={x}and length
9, = length gq. At least in case § is compact the cut locus
) 2)

C{p,q} seperates § i.e. S5~ C{p'q} has two components

K , K € € K_. Both t

D q’ P Kp, q a components Kp’ K q are

simply connected 2).

1) R denotes the real numbers.
2) Cf. remark 6.9.



Let S be a closed berdered subsurface of an unbordered,
simply connected, complete, two-dimensional Riemannian
manifold M, M having nowhere positive curvature 1). We assume
that 3S consists of locally rectifiable boundary curves.
Using theorem 6.3 we prove theorem 6.3 which gives a de-
tailed description of the cut locus CD for an arbitrary

point p in the above space S, if S is homotopic to a

circle. Some part of theorem 6.5 says:

There exists a continuous embedding

¥y:J3-+5s , J € {[o,11, [o,1] } ,

with ¥(J) = cp , Y(10,10) = cp N s~ 3s,

the restriction

¥,: 10,1 > S
/][

is a Ci-smooth embedding. The point ¥(0) belongs

to the frontier of the bounded component of M ~ S.

We used the above results theorem 6.1, 6.2, 6.3, 6.5 as basic
tools to attack our subsequent conjecture which we could

not prove completely up to now.

1) In other words M is diffeomorpnic to Euclidean plane,
M is complete and the curvaturz on M is everywhere smaller
than or equal to zero.
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Conjecture: Let S be a space of type (##), then we have:

a) For all points p € S the cut locus Cp is a contractible (may be

disconnected) tree.

1) . .
b) (Rk H, (8) = 1) <=> (There exists a point P, € S
1
such that Cp ~ 38 is C1-diffeomorphic to R)

° . 1
<> (For allp€ S €3S is ¢! -giffeomorphic to R')

c) (Rk H1(S) = n) <=> (For all points p€ § n = number
of ends of Cp\.aM - Rk HO(Cp\~BS)) <=> (There exists
a point P, € § such that n = number of ends of

2)
Cp ~ 38 - Rk HO(Cp ~98) ).

o o
We want to make a final remark on a result of particular
interest that we shall mention only here in the intro-
duction. The authors prove in [5] local bipoint uniqueness
for geodesics in bordered Riemannian manifolds with ¢ -
smooth boundary. This means every point there has a
neighbourhoed in which every pair of points can be joined

by a unique (normalized) minimal join, cf. theorem 5.6,

Using this result, then the result, the theorem Existenzsatz 16 in

Rinow's book [59], p. 277, 278 holds for compact non

1) Rk H1 is the rank of the first homology group of s,

2) The deeper reason why the above conjecture should be true is as follows:

Namely we think that for a space of type (*;*) roughly spoken the following

cut locus Sg bounds fundamental damains. Further, pick in S the minimal
loops (with base point p) which generate the fundamental group of S. Lift
those loops to S. Start the lifts in a point Pye™~1 (p) € § and call
the end points of the lifts p res+ P . Then the cut locus of £p1,...dpk
(is contained in a fundanentaf camain and) covers Cp-
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o
contractible Riemannian manifolds with C -smooth bounda-

ry. Thus one gets in particular the following result.

Theorem: Let M be a non-contractible, compact Riemannian
manifold with C -smooth boundary. Then there exists in

M a non-trivial closed C1—smooth geodesic.

The latter result has been proved by us in [77] for non
simply connected, bordered, compact Riemannian manifolds
under weaker assumptions for the Riemannian metric and

for the boundary.

In 1978 we started to investigate shortest paths, distance
geometry and cut loci in bordered Riemannian manifolds.

We did not know in those days that at the University of
Illincis 8. and R. Alexander, R.L. Bishop and J.D. Berg
were already active in this field. Since those days there
have come many important contributions to this field, see [2],

[31 , [41 , [51, [12].

In a series of recent papers V. Arnocld in Moscow has consider-
ed the obstacle problem, see [61, [7], [81, [9]. 1
V. Arnold is carrying out a general program which iden-

tifies standard singularities related to the geometry of

1) We guote now from [5].



groups generated by reflections with normal forms for
singularities occurring in variational problems. This
investigation leads him to an analysis of wavefronts
around an obstacle in general position in Euclidean space.
However, as Arnold says this investigation is far from
being complete even in Euclidean 3-space, see [ 61, [10]

p. 65.

S. Alexander, J.D. Berg and R.L. Bishop investigate in [5 ]

the local distance geometry in a Riemannian manifold with

smooth boundary. Their emphasis is on the structure of

fields of geodesics. 2) In the presence of an obstacle the descrip~

tionof such fields in terms of differential equations is no

longer feasable; as an alternative they present in [51] a
differential inequality which functions as a one-sided ver-
sion of the Jacobi eguation. In conseguence they obtain

a local bipoint unigueness for geodesics and a geometric
estimate on the distance below which bipoint uniqueness
holads. 3) They give a statement of regularity for geo-
desics involving a decomposition into tangential and normal
part. Specifically, the tangential part is smoother by

one degree than the geodesic itself which is C1'1—smooth

and the normal part satisfies a convexity condition.

1) Those wavefronts are level surfaces oi the intrinsic

distance function.

2) We quote from [5].

3) ?hey prove: Every point has a neighbourhood U such that
for every p,g in U there is a unigue minimal gecdesic
segment joining p and g, and there is no other geo-
desic segment joining p and g ané lying in U.



- 32 -

They show the existence and continuity of Jacobi fields

and apply this to get results which contribute to under-
stand the local bifurcation behaviour of geodesics in
bordered manifolds. The latter will be of essential
importance for further global investigations of geodesics
and distance geometry in bordered manifolds. Investigating
fields of geodesics with a common initial tangent vector

S. Alexander, J. Berg and R. Bishop are led to the following

conjecture:

"Every boundary point p has a neighbourhood in which two
geodesics coincide if they have the same initial tangent
vector and length and if their endpoints lie on the bounda-
ry." They prove in [ 5] that this is equivalent with the
following conjecture, which they call "Cauchy uniqueness

for manifolds with boundary”.

Every boundary point has a neighbourhood U such that for

any two geodesics in U with the same initial tangent vector
and length, one of the geodesics is a lift of the other."

Here a lift Yy of a normalized geodesic v ¢ [0,1] + M is a
normalized C1-smooth curve which has the same length and
initial tangent vector as vy; further ¥ consists of an initial
segment of y say ;[O,u] = y[Oo,ul , ue€ [0,1] and ?[u,l]

is a geodesic relative to the ambient unbordered Riemannian
manifold M M. It is shownin [5] that for small enough neigh-
bourhoods those lifts yield geodesics contained in M. The

lift endpoints trace out the involute curve ¢ of y namely



-

cf{u) = exp (l-u) Y(u) , O0<w <1l

exp being the exponential map of M. Therefore the validity
of the above conjectures would implyv that locally every
initial vector and length determines exactly one involute and

those involutes describe all possible bifurcations.

In 1980 a group of analvsts in Pisa including E. De Giorgi,
2Z. Marino, D. Scolozzi and M. Tosgues became interested into
proplems for geodesics in bordered n-dimensional sub-
. n N L
manifolds of R {(geodetiche con ostacolo). The geodesics
are interpreted as stationary po.nts of the energy-function-
al. One has for those stationary points unilateral constraints
arising from the condition that the geodescis must stay in
the bordered manifold. Those analysts in Pisa apply a
-
. N . 4 .

theory of functionals, not necessarily C”~ or convex on in-
finite-dimensional spaces which was initiated Ly De Giorgi,
Marinoc and Tosques see [24]. Marinc ancé Scolozzi [48] have
shown that gecdesics have Lipschitz continuous derivatives
and that for a large class of n-dimensional bordered

. AR B R < B R
submanifolds of R there exist iniinitely many geo-
desics (the supremum of whose lenghts is infinite) join-
. . e s L ) ) iies
ing two given points in the submanifolcd. Using different
methods than in [3 ] D. Scolozzi [62] has proved bipoint

) < 3) - . .
unigueness for gecdesics. D. Szolozzi has also proved the existence

of closed geodesics for certain bordered n-dimensional sulmanifolds of R..

1) For instance if the submanifold is complement of an
open set 0, O diffeomorphic to the open n~dimensional
unit disc.

2) They apply here Lusternik-Schnirelmann category theory.

3} Scolozzi uses analvtical and variational methods.
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0Of course it is important that a perhaps new or young con-
cept contributes to scolve classical problems in its field,
here in differential geometry. As far as we know there
exist at least two places whers intrinsic considerations in
bordered manifolds have been tsed in the proofs of major

1)

theorems. Those are the theorsx of Efimov and the theorem
of Cohn Vossen the latter being the generalisation of the
Gauss Bonnet theorem to compleze surfaces. It is the main
problem in the long and difficzlt proof of Efimov's theo-
rem [28], [43] to show that csrtain bordered surfaces are
not complete as metric spaces in their interior metric.

This proof also uses the regularity of geodesics in those
bordered surfaces, see [43], p. 537-541, One of the most
promising fields for applications of distance geometry in
bordered manifolds may perhaps be seen in the investigation
of diffusion processes in borcsred manifolds. See [541 § 4
and see the list of problems in [54] p. 28. Those investiga-
tions have applications in the spectral geometry of bor-

dered manifolds, see [54].

1) Efimov's theorem says: "No surface can be C2 immersed
in Buclidean 3-space so as o be complete in the induced

Riemannian metric, with Gauss curvature X < const < 0."
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§ 2 Preliminaries

In this paragraph we state and explain some results from

{77 concerning existence and regularity of geodesics in bordered
manifolds. These results are used many times in this paper.
Crucial for our work is the concept of interior metric in

the sense of Rinow, see [59 p.121 and {77 p. 1 . In a path
connected metric space {M,d) we can define the length of

a path c(t), c(t): I + {M,d) as the supremum of sums of dis-
tances between partition points taken over all finite parti-
tions of the parameter intervall I. If this supremum denoted

by Ld(c) is finite then the path ¢ is called rectifiable.

Now if any two points x,y in (M,d) can be joined by a recti-
fiable path then one can define a new metric & , ) on M,

by taking d(x,y) as infimum of lengths for all rectifiable
paths joining x and y. If the metrics d( , ) and d( , ) agree
we say (M,d) is a space with an interior metric. Very important

for us is the following result of Rinow.

Lemma 2.1: In a locally compact and complete metric space
(M,d) with an interior metric: any two points x,y can be joined

by a distance'realizing path ¢, thus Ld(c) = d(x,y).

For a short proof of lemma 2.1 see [77 p.8, see also [59]p. 141.

The following theorem is essentially one of the main results

in (77 , see also remark 2.1 below.

1) The results given in theorem 2.la,b below seem to be more or
less well known meanwhile. Now there exist various recent papers
giving results which are overlapping with the subsequent theorem
2.1a,b, see [41, [5], [12], [48], for theorem 2.1b, see also [431,
p. 536. Moreover we realized that regularity problems closely re-
lated to theorem 2.1b have also been treated in older papers,
[64], [22], [35]. The existence probiem (theorem 2.1a) can even
be traced back to Hilbert {361.,



Theorem 2.1: Let M be an n-dimensional submanifold of an
n-dimensional C]-smooth manifold Fﬂ ﬂ~carrying a locally

Lipschitz continuous Riemannian metric (gij)' Let the boundary

aM of M be an {n-1)-dimensional topological submanifold of

M, 3M may be empty. Defining the distance d{ , } on ¥ by

d{p,q) := inf{length c| ¢ a rectifiable path in M joining p and q} ,
we require (M,d) to be a complete, locally compact metric

space. Under these assumptions (M,d) is a space with an interior metric.
We call the just deseribed space a space of type (A).

We have

Theorem 2.1.a: Any two points p,q in (M,d) can be joined

within of M by a distance realizing path ¢, i.e. Ld(c) = d(p,ql.

Theorem 2.1b: If M is in addition locally C]-diffeomorphic

to convex sets in Rn, then geodesics in (M,d) i.e. locally
shortest paths. in (M,d), are C]-smooth, if they are normalized.
Let (¢,U) be a chart of MaU, ¢(U)} = K a compact, convex set

in (R",] |). Then we have a constant number R such that for
any normalized minimal join c(t) contained in U,

1/2
|e(t) - &B)] <Rlt - %] , &(t) denoting the tangent vector,

where ¢ abbreviates ¢ o c. 1)
Remark 2.1: The Riemannian metric (gij) in the assumption

of theorem 2.1 induces a distance function @( , ) on M and

1) Note we want to keep our notations simple and short. Therefore
we shall often use the same notations for objects (i.e. paths,
vectors) and their related representations under some chart.
We hope that the meanin? will be always clear from the con-
text. Note ¢ 0 ¢ is a Cltl/2-smooth_path in K = R", in the
manifold structure & is here only ¢l-smooth.
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(M,d) is easily shown to be a metric space with interior metric,
see [777 p. 25. We reguire in the assumption of theorem 2.1 that
any two points in M can be joined by a rectifiable path c, ¢
contained in M, Clearly initially we mean here

that ¢ is rectifiable relative to the already existing metric
at, ), d.e. LE(C) < «, However it follows by e straightfor-
warc consideration immediately from the definition that we

have here for any path ¢: I+ (M,d) the equality Ld(c) = L@(c)
Therefore it is almost trivial, see {77]p.28, that (M,d)

in theorem 2.1 i1s @ space with an interior metric. There-

fore and because (M,d} is locally compact and complete theorem

2.1a Tollows by Lemma 2.1.

Remark 2.2: Let M be & closed n-dimensional submanifold of

an n-dimensional compiete Riemannian manifold M, 8M.an (n-1)-
dimensional topological submanifold of M. Then M s

a space of type (A) if 3M can be locally (i.e.

in some chart) represented as a graph of a continucus function.
This case includes in particular the situation where ¥ is
locally Cl-diffeomorphic to convex sets in R". OF course

all this covers the special case wherz 3F is a ¢*-smooth

{y > 1) manifold. The proposition 6.1 in § 6 gives a class

of exemples, where the assumption: of theorem 2.1a are fulfill-
ed while oM need not to b2 locally the graph of a continous

function.

Remark 2.3: Lat (M,d) be & space of type (A). We do not know

whether (M,d) is homeomorphic to the submanifold M of M.
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Let us assume throughout the whole paper unless we say any-
thing different that the considered metric spaces {M,d) and
all those spaces where our considerations take place are
at least locally compact and complete metric spaces with

an interior metric.

Now we give two minor results which will turn out to be useful
- later on. The following result is well known . Therefore

we are not pedantic in the formulation of it's statement and
we omit it's proof. See e.g. [20] p.24 for a proof of
Asseriion 2.1: If a sequence of minimal joins is contained

in some bounded set, then this sequence contains a subsequence

which converges uniformly against a minimal join.

The next assertion does in general not hold in an arbitrary
metric space, even if this space is complete and homeomorphic
to R], see e.g. [77] p.4.

Assertion 2.2: Let A be a closed subset of (M,d} and let

q be any point in M. Then there exists a point § ¢ A such

that d(g,d) = dlg,A), with d{q,A) := infid{q,8)|qeA 3.

Proof: Let o be any real number with dl{q,A) < a. The set

& := Anix|xeM, d(x,q) < a}is obviously a non empty, bounded
and closed subset of (M,d). Therefore A is compact, since
our metric space (M,d) enjoys the Heine-Borel property, see
e.g. [ 77) p.2. The compactness of S guarantees the existence
of a point GeA A with dlg,§) = d{q,A). This also proves our

claim d(%,q) = d(g,A), because we have dly,q) > d(g,q) for
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all points ye(iR) by definition of A. In case AR = B we

get here A = T and are finished too.
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§ 3 Extenders, Picas, Cut loci and regularity of the

distance-function

In this paragraph we discuss the problem "how to formulate

a definition for cut loci", prove reqularity properties of

the distance-function and give related characterisations

of cut loci. Those characterisations hold under weak regularity
assumptions and include as special cases known characterisa-
tions of cut loci relative to a point in unbordered manifolds
as given in (761, [43] p.134, [17], see corollary 3.2. During
the whole paragraph, unless we say anything else, let (M,d)
always be a space as given in the assumptions of theorem

2.1 with M submanifold of the Riemannian manifold (ﬁ,g) and

Tet A be a closed subset of (M,d). - We introduce the following
definitions for the technical reason of convenience, but

we also think that they describe crucial proper-

ties.

Definition 3.1: A point qe{M-2M) is called extender relative

to A or extender in short if there exists a non trivial minimal
join from A to q which can be extended minimally beyond g.
Definition 3.1': A point qe{(M-3M) is called non-extender

relativeto A or non-extender in short if there exists anon trivial minimal

join from A to g which cannot be extended minimally beyond q.

Assertion 3.1: Although this is not literally stated it is

easily seen that the statements in definition 3.1 and defini-



- 41 -

tion 3.1.' are mutual negations. Therefore one can add without
changing the content that in both definitions 3.1 and 3.1
the statements there must hold for all minimal joins from

A to the point g.

Definition 3.2: A point gz{M~3M) is called a pica }e1ative
to A or pica in short if g has at least two minimal joins

to A with distinct tangents at q.

A pica is clearly a non-extender however not every non-exten-
der is a pica, even not in an unbordered manifold with a

real analytic Riemannian metric if we consider picas and
non-extenders relative to one point sets. The next paragraph
§ 4 contains a detailed investigation of the relation between
picas and non-extenders.

Somehow typical for bordered manifolds is the existence of
the below defined branching points, which are necessarily
located on the boundary 3M if the Riemannian metric is C]’]-
smooth. However the following definition does not exclude
branching points which are located in (M<3M) and such may perhaps
occur in case the Riemannian metric is only Lipschitz

continuous.

Definition 3.3: A point bEM is called branching point relative
to some closed set A, bfA, if there exists a non stationary
sequence of points (qn), nzN, such that for some positive

b’ a, b ne

real number s , ¢ {s ) = b for all neN and /”;} % [0,sp) = (b},
n
with s — cq (s} a normalized minimal join from g p to the
n
set A.
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It is easy to give examples for branching points. In figure
3.1 as well as in figure 3.4 below the point qp is a branching

point relative to the set {p}.

The following heuristical discussion, see also [ 2], together
with the subsequent results in this paragraph and results

in § 6 way help to motivate our definitions 3.4.1,
3.4.11, 3.4.11I, 3.4.1V below proposed for cut loci. One seeks
a formulation of the classical notion of the cut locus which

is appropriate to the setting of bordered manifolds. One

might reasonably wish that say respective some point p the

cut locus Cp should be a closed set of measure zero. Further
M\Cp should be contractible or at least have a fairly simple
homotopy type. By this we:mean that 'M'\Cp should be contract-

ible or at least highly connected.

Probably all these requirements can be met only under stronger
regularity conditions and only in more special situations

than those we need for our results in this paragraph. Intui-
tively for say physical reasons it seems to us that the dis-
tance wave concept mentioned in the introduction fulfilis

in a large class of two dimensional manifolds the above stated
requirements for the cut locus Cp relative to & point p.
Namely at least for a large class of two dimensional manifolds
the following statements should hold. First the cut locus

Cp in the distance wave concept being the locus where the
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distance wave fronts relative to p have self interference
seems to have measure zero on the Riemannian manifold (ﬁ,g).

- Further viewing M ~ Cp as being somehow backward exhausted
by the distance wave fronts relative to the point p it seems
plausible that M~ Cpis contractible in p. However the inves-

tigation of the distance wave concept for cut loci might

be justified also on grounds of it's own geometric appeal.

Now we discuss the problem of defining cut loci at the example
of a bordered manifold described in figure 3.1 below. This
figure describes a compact subspace (M,d) of the Euclidean
plane. Here (M,d) is topologictlly a closed annulus whose
boundary is given by the circle and the exterior simple closed
curve in figure 3.1. Even this primitive example will already
exhibit problems and phenomena which do not occur in unbor-

dered manifolds, but are typical in our setting.

Figure 3.1
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Figure 3.2

Let us take the classical definition of cut loci literally

in the situation of the example in figure 3.1. Then the cut
locus relative to the point p is here the set of all non-
extenders relative the point p in sense of definition 3.1.
However we wish to include also non-extenders which are loca-
ted on the boundary. With this proposed definition we immedia-
tely run into difficulties. First it is not clear how to

apply this definition intuitively reasonable to points which

are located on the boundary say if a minimal join meets 3M

transversally. Moreover we also don't seem to get what we
want by the literal application of this definition in cases
where a minimal join starting in p meets aM tangentially

as say in case of the points 9 and g5 in figure 3.1. Here
it can be arranged with C”-smooth boundary that 3 is a non-
extender while 9 is an extender, since minimal joins from

p to g, can be prolonged minimally up to all points located
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in the shaded set D, since the point 9 is a branching point
relative to the point p. In this exampie the cut locus Cp
would contain the isolated point 45 and the dotted arc between
q and 9, except the point G- Therefore already in this
example we observe a phenomenon which does not occur in unbor-
dered complete Riemannian manifolds, i.e. 'the set of non-
extenders relative to a point p, i.e. here the half open
dotted arc, has a cluster point Gy being an extender'. In

the example in figure 3.1 this cluster point is located on

the boundary. However, in figure 3.2 we have the situation
that a sequence 9 of non-extenders relative to the point

p is converging against an extender 4> where the point 9%

is not on the boundary. Here figure 3.2 describes a bordered
submanifold of Euclidean 3-space, where M is the closed non-
convex set being the compiement of the open convex cone scetched

in the drawing.

If we take instead of a single point some closed set A, we
even may have in an unbordered complete manifold M the situa-
tion that a sequence q, of non-extenders relative to A is
converging against an extender qoi(M\A). This situation occurs
in figure 3.3 where M is the Euclidean 3-space and the set

A is given by the two non-dotted rays emanating from the point
p. Here the points q, neN  are not contained in the plane

spanned by the two rays in A,
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Figure 3.3

In [76] we gave in a complete unbordered C”-smooth Riemannian
manifold a characterisation of the cut locus for any point

p as closure of all points having at least two distinct minimal
Jjoins to p. Taking this characterisation as definition then
one can easily show that say for a space (M,d) as assumed

in theorem 2.1 the complement of the cut locus is contractible.
However, with this definition for the cut locus the shaded

set D in figure 3.1 would contain subsets of the cut locus
relative to p which are open in (M\3M). Therefore using this
definition the cut locus relative to some point would

in general not have measure‘zero not even in a compact subma-

nifold M of the Euclidean plane with real analytic boundary.

We return now to the example in figure 3.1. Clearly with
the classical definition literally applied, the cut locus
here is not closed since e.g. the cluster point q, is missing.

Further it would contradict our intuition that here e.g.
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the point a3 should belong to the cut locus, since qq does
not belong to the closure of points where the distance wave
front relative to some source point p has self-interference,
which in this example happens to be on the dotted arc between

q, and gy, See figure 3.1.
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Although the main objective of this paper is the investigation
of cut loci of points, we give four definitions of the cut
Tocus of some closed set in a bordered manifold. We define
cut loci of closed sets because the results in this paragraph
and various results in other sections hold for cut loci of

general closed sets.
Definition 3.4.1: The cut locus of some closed set A is the
closure of the set of all non-extenders relative to A. We

denote this cut locus of A by Ci.

Definition 3.4.11: The cut locus of some closed set A is

the closure of the set of all picas relative to A. We denote

this cut locus of A by CAI.

Definition 3.4.111: The cut locus of some closed set A is

the closure of all points (possibly on the boundary) where at
least two minimal joins starting in A end up with distinct tangents.

We denote this cut locus by CAII.

Definition 3.4.IV: The cut locus of some closed set A in

a manifold M is the set of all non-extenders relative to A

together with its clusterpoints on oM. We denote this cut Tocus

by c/ﬁv :
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Remark: a) In unbordered complete n-dimensional Riemannian
manifolds all four definitions for cut loci are equivalent

if the related closed set A is a point or a Cz-smooth submani-
fold or if e.g. A is a bordered submanifold with Cz-smooth
(n-1)dimensional boundary.

b) Further we think those four definitions agree for the

cut locus of a point in a bordered two-dimensional manifold

M, M being submanifold of a 2-dimensional unbordered complete
C*-smooth Riemannian manifold M with § having curvature everywhere
smaller or egual to zero.

We will return to this remark in paragraph 6.

Remark: In general we have that definition 3.4.1 and 3.4.11

are equivalent by theorem 3.la, thus Cg = C;I. It is obvious

that for closed sets in unbordered manifolds Civ ¢ Ci, see

in _particular vemark 4.2, We obviously have CIII p) CI: and

A A’
(CIII\aM) = (CXI\aM) by definition, but it is possible
A A

11
A )
hemisphere of the twodimensional unitsphere. Then for a point

p on 3M we have that chI consists of the point located dia-

that (CiII\C 3 . Take as an example for (M,d) a closed

metrically to p on the boundary circle of M, while Cél is

empty. Therefore we have in general the following inclusions

v 1 _ (I 111
CA cCy = CA c CA

A where e.g. the case
Civ G Ci = Cil ;,Cill may happen. We obviously get from these con-
siderations that Ci ~3IM = C£1‘~BM = C£11~\3M . However, it may hap-

pen that C;V‘\8P1; Ci ~M cf. remark 4.2. Therefore it would be

interesting to know: "If A is a point p, under what additional as-
IV I
sumptions (if they are necessary) holds Cp‘\HW = Cp\ M.
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Remark: In an unbordered complete C”-Riemannian manifold

M the cut locus relation is symmetric relative any point

p. This means if a point q belongs to the cut locus Cp of

the point p then p belongs to Cq. It is of particular interest
for our work that in a bordered Riemannian manifold this

symmetry does not hold in general, so e.g. in figure 3.1

the point reDn(M\3M) does not belong to CéuC;IvC;IXUC;V while
we have p € CII)!\ C;Incplnn Cév. We mention that the above

symmetry in the cut locus relation does in general not hold

for a closed subset A in an unbordered complete Riemannian mani-
fold. Take e.g. as set A the unit circle in the Euclidean

plane EZ. Then the cut locus of the set A in E2 is the mid-
point o of the unit disc, while the cut locus of the point e

is empty.

- ~. = ~

N Jpa ~ ~. -
Figure 3.4 ~ -
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Remark: The exampie in figure 3.4 shows a phenomenon, which
does not occur for cut loci in unbordered manifolds even

not for the cut locus of some closed set. Figure 3.4 describes
& bordered compact submanifold M of the Euclidean plane.

Here M has the topological type of a closed annulus, M is
described by the exterior polygon and by the interior equilat-
eral trianglé})The cut locus relative to the point p in the
sense of all four definitions is the dotted arc between the
points q, and 9- Now if we apply in a generalising way the
definitions of pica and extender literally also to the boundary
point 9, then we have that the point 9, is a (generalised)
pica relative to p and at the same time a (generalised) ex-

tender relative to p.

1) The complement of M is shaded.
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As already mentioned above, the following theorem 3.1 and
in particular the statement in theorem 3.1b may be seen as
a motivation of our definitions 3.4.1, 3.4.1I, 3.4.1II for

cut Toci in relation to the distance wave concept.

Theorem 3.1: Let (M,d) be a space as given in the assumption
of theorem 2.1, A a closed subset of {M,d). Then the following
statements hold.

3.1.a The closure of all nonextenders relative to A, i.e.

the cut locus Ci equals the closure of all picas relative

to A thus C; = C1L. Equivalently, Ma(aMoALC,) 1S the maximal
open set of points in M~(3MvA) where minimal joins to A start
with a unique common initial direction.

3.1.b The set M\(aMuAucg) equals the maximal open set of

points in M<(aMvA) where the function d(A,-) is C]~smooth.

Theorem 3.1.a yields immediately the subsequent corollaries.
Corollary 3.1: We have Cp~aM = CilN oM.
Corollary 3.1': The set of picas relative to A is dense in
the set of non-extenders relative to A.

For unbordered manifolds theorem 3.1a gives directly
Corollary_g;givlf aM=0, Ma complete Cz-smooth manifold,
where the Riemannian metric (gij) has in local coordinates
locally Lipschitz continuous gerivatives, then M\Ci is the
maximal open set in M of points with unique (nontriv-
ial) minimal join to A. Equivalently, the closure of non-
extenders relative to A, i.e. the set CI

A
of points with at least two cistinct minimal joins to A.

equals the closure
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Remark: In the special case that the set A is a point, corol-
lary 3.2 gives characterisations of the classical cut locus.
This special results has been proved in [17], [42], p. 134,
[761 under stronger regularity assumptions for the Riemannian
metric. Vice versa, even in case of a ¢”-smooth Riemannian
metric corollary 3.2 is out of reach for the methods employed
in {171, [42], [76] since all those methods rely essentially
on the existence of an {at least continuous} exponential
map, which in general does not exist for arbitrary closed
sets in an unbordered complete Riemannian manifold.

We denote the closure of 211 picas relative to A by {Picas)

and the closure of all non-extenders relative to A by {Non-

extenders).

Proof of theorem 3.1 : A short look on the definitions tells

that it is sufficient to show the equality

(Picas)~aM = (Non-extenders)~aM. Namely we obviously have

(3.1 CilxaM = (Picas)waM ¢ (Non-extenders).aM = CA\SN
since aM is closed and since a pica in (M.aM) is clearly

a non-extender, because minimal joins are C]-smooth within

of (M.aM) by theorem 2.1b. It remains to prove

{{Picas)-sM) 5 ((Non-extenders).sM). The statement of the
tast inclusion is equivalent with its contraposition, i.e.

the conclusion
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{qeM((Picas)uaMuA))) =3 (q is extender relative to A) (3.2) .

For the proof of (3.2) and for the proof of theorem 3.1b

we proceed in the following three steps which we show seperate-
ly at the end of the proof.

Step_1. We show that we have a continuous vector field.
(M\(Au(P%caijuaM)aq-+ ¢

q
¢ := (unique common initial vector of all minimal joins from q to A),

l:q‘q =1, | Iq the norm respective the Riemannian metric g at
the point q. Note minimal joins from a point q to the closed set
A exist by assertion 2.2 and theorem la.

Step 2. We show, if the function d{A,-) is differentiable

at a point qe(M(Au(Picas)vaM) then the gradient d(A,») at

the point q equals -éq.

Step_3. Show lemma A.1': Let f be a real valued function
defined on an open subset 0 of R, ﬁurther let v: 0 R"

be a continuous vectorfield on 0. Now if f is locally Lip-
schitz continuous and if it's'gradient at those points where
it exists equals the vector from the vector field v then f

is a C'-smooth function on O and the gradient of f equals

vy on 0.

Combining the statements of the three steps and using the
Lipschitz continuity of the function d(A,) we get that d{A,-)
is C'-smooth and gradient d(A,-) equals -éq for all q‘in

the open sets M~(3MuAu(Picas)) > M\(CivAvaM) . The last inclu-
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sion follows from the conclusion in (3.1). Thus we have proved
theorem 3.1b except the maximality claim there. Obviously
M(aMvAu(Picas)) 1is the maximal cpen subset of M~(BMUA)
where d{A,-) is c!-smooth since d(A,+) clearly cannot be
¢'-smooth in a point qe{Picas). Therefore we are finished with
the proof of theorem 3.1a as well as with the proof of theorem
3.1b if we show (3.2). For this let §e MN(3MUAU(Picas)). We
have to show that § is an extender. Take any minimal join
¢: [0,d(A,§)] + M from A to q. Then within of M~(BMUAU(Picas))
the path c(t) is an integral curve of the continous vector
field q - -E:q. Namely for all q = c(t) € M~(3MUAU(Picas))

we have é(t) = grad d(A,:) = -éq.
We use the fact that § has aneighbourhood Ue M ~(3MUAU(Picas))

say U homeomorphic to Rn, whereon the vector fieldq~ -éq

and hence the related differential equation are continuous .

By Peano's theorem we can extend the solution clt) beyond

G up to some point say c(d(A,§)+8), & > 0. Since c(t) = grad d(A,-)

for all ¢(t), t€ [0,d(A,q)] VU I, 1 := [d(A,§), d(A,q) +6],

the path c: ([0,d(A,§)1 UI) M is really a distance %ea]izing extension

of the minimal join ¢ from A to ﬁvup to the point c(d(A,q)+s).

Proof of the claim in step 1: Let (qn), neN be any sequence
of points converging against some point 9 with
{qnlneNO} ¢ (M{Av(Picas)uaM). Take any sequence of normalized

minimal joins cq (t) from g, to A. We have to prove that
n
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Timc (0) = ¢_ . Assume ¢_ (0) contains an equally denoted
nse 0 9% %n )
subsequence converging against say vq $ cq . Now we will

0 0

derive a contradiction from the condition that q belongs

to (Mu(Au(Picas)uaM)), i.e. éq is the unique common initial
vector of all minimal joins from qoto A. Namely take some

e > 0, such that relative to some chart {¢,U) for large enough
numbers n the segments cqn([O,e]) are all contained in the
neighbourhood U of q, ¢(U) a compact, convex body in

(Rn,l ). In a bounded set any sequence of minimal paths
contains a subsequence converging against some minimal path

by assertion 2.1. Here the related subsequence is converging
against some minimal join cqo(t) from qg to A. Therefore

we have an-{equally denoted)- subsequence of the normalized
segments cqn([O,c]), neN with’
(3.3} lim max {]cq (t) - cqo(t)I /tell,el}=0,

o n _
| | the norm related to the chart (4,U). Note éq (0) =c_!
0

%

Now by theorem 2.1b the derivatives éq (t), neNy, fulfill a
n

Holder 1/2 condition, i.e. ¢, (t)-¢  (E)] <8 1t-E1 /2 for

n n
all t, te[0,e], B valid for all minimal joins contained in

#(U). Using this Holder 1/2 continuity and the assumption

1im ¢_ (0) + & = ¢ (0), a routine estimation shows that
R % %
there exist v,8¢]0,e[ such that lcq (y)-cq (y)] > & for all
n 0

neN. This contradicts {(3.3).

Proof of the claim in step 2: We obviously have |grad d(A,q)|

q

< 1.



- 57 -

Assume grad d(A,-) % éq at some point q. Denote the directional
derivative of d(A,*) in direction of the vector (—éq) by

(—éq)d(A,'). Now we get a contradiction since
-¢ ‘) = ¢ I 1
{ cq) d{A,*) = <Grad d(A,q), cci>q < |grad df q)lql Cq'q <

d{A,c_(t}) - d(A,q)
q =1,

and because (-¢_)}{d(A,-)) =-Yim
4 t+0 t

<','>q being the Riemannian metric at the point q.

Proof of the claim in step 3: Lemma A.1' is a special case

of Lemma A.1, which we prove in the appendix.

Theorem 3.2: Let (M,d) be a space as assumed in theorem 2.1b.
Then M\(CiIIuA) is the maximal open set in M\A, on which the

function d(A,*) is C]-smooth.

Proof of theorem 3.2: Our proof of theorem 3.2 relies essen-

tially on arguments used in the preceding proof of theorem
3.1. By assertion 2.2 and by theorem 2.1b any point qe(MA)
has an everywhere C]—smooth miniral join cq(t) from q to
the set A, Due to definition 3.4.1I1 we can define a vector
field g— -éq on M\(CiIIuA) in the same manner as in step 2
in  the above proof of theorem 3.1, Using the assumption
that (M,d) 1s locally C]-diffeomcrphic to convex sets in
R", the same arqument as in the above proof for the claim
in step 1 shows that the vector Tield q— Cq is continuous

on M\(C;II;A). Further the same argument used for the claim
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111
A
where d(A,+) is differentiable grad d(A, ) equals -éq. Combin-

in step 2 above shows that at a point qe({M(AJC, ))\3M)
ing these facts and the Lipschitz continuity of d(A,+) with
the following lemma A.1 {which we prove in the appendix)

yields immediately that d(A,-) is ¢'-smooth on M\(Aucill)_

Lemma A.1: Let K be a locally convex body in R .

Let v: K » R" be a continuous vectorfield and let f: K + R
be a locally Lipschitz continuous function. If gradient f
at those points where it exists within K~ 9K equals the
vector from the vector fieldv, then f is C]-smooth on K and

grad f equals v on K,

Now since d{A,-) can not be C]-smooth in a point where two
minimal joins to A start with distinct tangents, we get that
M\(CAIIRJA) is really the maximal open set in M\A where d(A,-)

is C]-smooth.
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It is obvious that we obtain by theorem 3.1 and by theorem 3.2 some kind

of generalized Gauss lemma i.e: Outside the cut Tocus CA a level sur-

face of the distance function d(A,-) being a Cl-smooth hypersurface is

orthogonal to the minimal joins from A to points in this hypersurface.

Corollary 3.3 (Generalized Gauss Lemma): Let A =M be closed.

Let r be any positive number, we define Sr(A) ="{qeM]| d(Aq) =r}.

a)

Let (M,d) be a space as given in the assumption of theorem 2.1 and
let 0 be an open set in (M,d) with Ci n(0~3M) =@ . Then for
every r >0 (U~ 3M) nSr(A) is a Cl—smooth hypersurface if

(U ~sMmn Sr(A Y# @ . Further (U~3M) nS.(A) is orthogonal

to the minimal joins from A to points in (U~9M)n Sr(A) .

Let (M,d) be a space as assumed in theorem 2.1b) and let 0 be an
open set in (M,d) with Cilln 0=0. Thén every point g € 0 has a
neighbourhood U(q) in M such that the following holds:

For all r > 0 with U(q) nS _(A) # § existsa ¢} -smooth hypersur-
face Hy in the ambient manivold M and U(q) n Sr(A) = U{q) n H,.. Further

Hr is orthogonal to the minimal 1) joins from A to points in

U(a) N S,(A).

Proof: The proof of a) is a trivial application of theorem 3.1

For the proof of b) recall by theorem 3.2 d(A,-) is Cl-smooth on all 0.

We need now the property of M that every point g € M has a neighbourhood

E(q),ﬂ(q) being diffeomorphic to a convex set in R". Clearly we can

assume U(q) = 0. Now applying Whitney's extension theorem [1 1 p. 120

it is not difficult to see that we can extend the function

1) We mean here minimal joins in the space (M,d).
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d(A,.): ﬁ(q) - R 1) to a Cl—smooth function defined on an open
®* = .
set ﬁ in M with U = U(q). Using the implicit function theorem it

is now easy to finish the proof of b).

Remark: Let from now on CA be the cut locus in the sense of defi-

nition 3.4.1. Thus we have always CA = Ci unless otherwise said.

1) U(q)denotes the closure of U(q), clearly ﬁ(q) is diffeomorphic to
a convex body in RN. One needs this convexity to verify the conditions
of Whitney's extension theorem.



In the gpreceding paragraph we proved in theorem 3.%z
that the picas are dense in the set of non-extenders,

This result wzs & generslisation of a result uhich we

[in)

had already proveg in [76) lemms 2. Lemmz 2 in (7§ says:
"For any complete unborcdered Riemannian manifold M and

any point pe M those points with at least two mini-

mal joins to p are dense in the cut locus Cp of the point
p." Our proof of lemmz 2 in [/ using the invariance of
gomain theorem relied on the continouity of the map
stix[xeTpM, Ix|= 1] —= [0,00] , S(ﬂ::sup{aeR/d(p,expP( ox)=ol},
[C,0¢] the one point compactification of the intervall [C,e),
That proof of lemma 2 was topologically motivated. Indeed
the possibility for a topological interpretation of

lemma 2 in [76] becomes very clear by the subsequent

lemma 3a.T, the so called "glueing seam lemma".
g o]

Lemma 32.%: Let N be a compact unbordered topologi;al
manifold, f: B:={xeR"[ixI¢1} —= M  a continuous sur-
Jective map with the restriction of f being injective
on B\dS , l.l the Euclidean norm. Then the "broper
identification points" of the map f i.e. the points
oef (9B) with 1) card f-lun >2 are dense in the

"glueing seam" £(38).

Ye consicer f(2B8) to be a'glueing seam) where the disc
B vie identification on it's boundary is glued to be-

come the manifold M. In our topological interpretation

1) We denote by card 8 tne number of elements in a set B,
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of lemma 2 in [/§ the exponential map expp corres-
ponds to the above map f in lemma 3a.1 and the cut lo-
cus of p corresponds to f{dB). Clearly if M is compact
then lemma 2 is an immediate conseguence of the mere
topological lemma 3a.1. We shall prove the following

lemma 3a.1, which will give us also lemma 3a.1.

Lemma 3a.%1: Let M be & compact topological menifold,
2m may be nonempty. Let f:B:={xeR"/IxlI¢1] —=M be

a continuous and surjective map and assume that the
restriction of f is injective on é::ixeRW {xt<13 . Then
the set of points D:=ixeBlcard f e (x) = 2,f(x)¢ oM}

is dense in S:={xeB/|xl= 1, f(x)¢dmy.

Using the continuity of the map f the precedimg lemma
yierlds immediately the subsequent corollary 3a.1 which

includes lemma 3a.ft.

Corollary 3a.1: The "proper identification points" i.e,
the points yeM with card fﬂ(y)z 2 are dense in the

glueing seam i.e. in f{3)\3M .

Eroof of lemma 3a.i: The proof will be indirect. Assume

there exists a point x,€3 such that x, cannot be
approximated by a sequence of points contzined in D.
Then we have a number O>0 such that Hg(¥X):= Bg(xe)NB
is homeomorphic to B and OnHg(x,) = g,

Bs{xo):=§xeR"/ |x~x,128}. Thus the restriction of f is
injective on Hg(xo). Therefore the restriction of the

map f to the set H6(xo) is 2 homeomorphism onto it's
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image f(Hg(x,)), (beimg a continuous univalent mapping
on a compact set). Let P U(F(x,)) —= R" be a chart
for e neighbourhood of f{xq). We identify U(f(x,)) with
the related set in the chartspace. There exists a
natural number N, such that for any natural number

n> N, the open ball & (F(xo) ) s={xeR™ [ 1x=F (x5)1< 43

3
is contained in U(f(x4)). %ow for any natural number n
larger than a certain number Ny N, the open ball
B%(f(xo)) contains points lying in the complement of
f(Hg({x,)) because x, has in Hg(x,) a neighbourhood
homeomorphic to the closed n-dimensional Euclidean
halfspace. Thus we can take a sequence of points (yn)
n2 Ny, with y, in B%(F(xo)) but not in F{Hg(xg,)). We
define a sequence (x,) by taking for every number n > Ny
a point xnefq(yn). The sequence (xp) has a cluster point

X, in 8. By passing to an equally denoted
subsequence if necessary we can assume that (xp) converges against
Xo. Clearly X  # X, because  x [ H5(x0) for all n > No
However due to the continuity of the map f we get

Flxe)= 1im (yn)= lim f(xq)= F{lim (xn))= F(X,).

Thus card f4(F(x°))a-2. Therefore x, € D contradicting

the assumption that x, is not a cluster point of D.



- 64 -

§ 4 'Lipschitz points and simulation of certain conjugate points

A well known classical result for the cut locus Cp relative
to a point p in an unbordered complete c”-smooth Rieman-
nian manifold can be expressed in our terminology as fol-
lows; 'If a point g € Cp is not a pica relative %o p,
then g must be a conjugate point relative to p.'

This means the point g must be a singular value of the
exponential map expp. In our situation in bordered mani-
folds an exponential map is in general not available.
Nevertheless analysing the behaviour of geodesics which
arrive in the neighbourhood of a‘point q in the cut lo-
cus, where g is not a pica, we find out how to simulate
those conjugate points or one might say how to imitate
those singular values of the exponential map. See in par-
ticular (4.1) and (4.2) Dbelow. Viqe versa
expressing that a point is neither such a
conjugate point nor a pica we are led to the concept of a
Lipschitz vpoint. For this during the whole paragraph let
(It.d) be a space of type (A) '), however assume M to
be a C”-smooth manifold with C”-smooth Riemannian metric
g unless otherwise said and let ’A be a

closed subset of (M,d).

Definition 4.1: A point g € M\(3MUA) 1is called Lipschitz

point relative to some closed set A or Lipschitz point in
short, if there exists a number R such that in some chart
{éq- éal = Rd(q,g) with éa the tangent vector at g of any
normalized minimal join from § to A, |.| being the norm

related to the chart.

1) cf. theorem 2.1,
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Definition 4.1': A point g ¢ M (3MUA) which is not a Lip-

schitz point relative to A is called non-Lipschitz point

relative to A or non-Lipschitz point in short.

Remark 4.1: The definition 4.1 excludes e.g. obviously

that a Lipschitz point is a pica relative to A. However

we do not require in this definition that initial vectors

of minimal joins starting at points in the neighbourhood

of g are uniquely determined by their starting point. E.g.

the point q, in figure 3.2 and the point 9, in figure 3.3
are Lipschitz points which contain picas in every neigh-
bourhood. Clearly the point 4, in both figures is an ex-
tender,‘That the point 9, in those figures is a Lipschitz
point can be seen directly from the main result in this
paragraph, the simplified (and weakened) version of which

may be given as follows.

Theorem 4.1: A point g€ M\(3MuA) is an extender relative

to A iff g 1s a Lipschitz point relative fo A.

Note theorem 4.1 need mnot to hold for a point g € aM\4 .
Ramely applying the definition of Lipschitz voint and ex-
tender literally also to boundary points the example in
figure 3.4 shows, that the point 9, on M fthere is an ex~
tender and at the same time a non-Lipschitz point.
It follows from theorem 4.1: 'If there exists a seguence Q,
with lim q, = g, such that with the notation used in defi-

o
nition 4.1,
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dlag,ay)

c 1

then q, is a nonextender.'

(4.1) 1lim = 0,

-C
4o qn

This last statement may perhaps help to explain how we
come to the concept of Lipschitz point after andysing the
situation in an unbordered manifold where say the point

q, belongs to the cut locus Cp relative to some point p and
where G, is a singular value of the exponential map eXpp-
The crucial part of our proof of theorem 4.1 may be seen
in the proof of the following statement, which is a
simplified version, of Lemma 4.1 below.

Lemma 4.7+ Let g € M\(3MUA) be an extender relative to A.
Denote by ci(t) any normalized minimal join from q to A,
then there exists ¢ >0 such that for each ¢ € 10,¢[ exists

B(c)>0 with

d(g,q) -
(4.2) Teel ey = 208

for all § €B_ (q):= {o' a'eM, d(q,q')55).
0

Theorem 4.1 yields directly the following characterisa -

tion of cut loci.

Corollary and theorem 4.2: The cut locus Ci i.e. the cut

locus relative to the set A in sense of definition 3.4.T is

the closure of all points which are non-Lipschitz points

relative to A.
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In an unbordered C' -smooth Riemannian manifold it cannot
happen that a sequence of non-extenders relative to some
point p is converging against an extender relative to p.
Therefore we have by theorem 4.1 in an unbordered complete
C®-smooth Riemannian manifold the foliowing characterisa-

tion of the cut locus CD relative to p.

Corollary and theorem 4.3: In an unbordered C -smooth Rie-

mannian manifold the cut locus relative to some point

ﬁis-ﬂ&zsetof all non-Lipschitz points relative to p.

Remark 4.2: In relation to the last corollary we wish to
point out the following facts. In a bordered manifold it
may well happen that a sequence a, of non~Lipschitz points
relative to some point p is converging against a Lip-
schitz point a, € ¥\(3Mu{p}) relative to p, see figure
3.2. If we take instead of a single point p some closed
set A then it may even happen in an unbordered complete

manifold that a sequence g

i of non-Lipschitz points rela-

tive to A converges against a Lipschitz point 4, relative
to A, see figure 3.3. Moreover the just described phenome-
non may even happen if we take in an unbordered complete
manifold for the set A a compact 01'1—smooth submanifold,
seealso § 5p. 127. Note in an unbordered complete Riemannian
manifold any closed C1'1—smooth submanifold is autamatical-
1y, a subset enjoying the so called unique footpeint proper-

1y, see definition 5.1.
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E. Kaufmann has shown in [37 ] that there

exists a comract submanifold A of E2 with the following
properties. KNamely A being homeomorphic to S1 enjoys the

so called loczl unique footpoint property and the picas
relztive to £ are dense in some open subset 0 of EQ. Since
any extender is a Lipschitz point by theorem 4.1 and be-
cause every point in O has a minimal join to A and can there-
fore be approximated by extenders, Kaufmann's example
shows, that we have in 0 a dense subset of Lipschitz

points and aliso a dense subset of non-Lipschitz points
relative to 4. Moreover if we take for some small enough
positive numbter ¢ a certain parallel surface A€+ of the set
A in Kaufmanr's example, A€+ being a connected component

of the set {x€3°|d(A,x)=c}, then A+ is a €' —emooth
submanifold of E%‘ cf. theorem 5.1 and we have that picas
and Lipschitz points relative to A€+ agree in the open set

0 with those picas and Lipschitz points relative 1o A.

If we apply the definition of non-Lipschitz point

and extender literally also to boundary points-.then

9, in figure 3.4 1is a non-Lipschitz point and exten-
der. - Note in general we can say if the point

q, €9M 1is a branching point relative to A, then

q, camnot have a neighbourhood U(qo) in M, con-
sisting of Lipschitz points relative to A with some common
Lipschitz constant R, valid for all points in U(qo). This
holds due to the unigueness properties of solution curves

of Lipschitz continuous vector fields. It may however happen



- 69 -

that all single points in some neighbourhood U(qo) of a
branching point 9, are Lipschitz points. In order to de-
monstrate this take the following example, where M is

a bordered submanifold of the Euclidean plane consisting

of all points which are located below and on the graph of
the function y = x2. Now let p € M be a point with Euclidean
coordinates say p = (-10,0). Then it is easily seen that

all points in M ~ ({p}U3M). are Lipschitz points relative
to p. Even the point q, = (0,0) € 3M being a branching
point relative to p is a Lipschitz point relative to p if one
applies definition 4.1 literally to d,- However, a simple
calculation shows: For every ¢ > O and for every natural
number n exist two numbers Gn, Sn, o < 5n <38, < 82

n

such that [éq - ¢

= >2n g ~-gq
n ql’l n

o

for the.points q, = (e , €7 - ¢, Qn = (e , 82 - 5.)

n n

éq , éq the initial vectors of the normalized minimal
n n

joins : from q,r én to p.

We now comé~tO a series of background results of theorem
4.1. The following definition, roughly spoken guantita-
tive version of definition 3.1 will turn out to be com-

fortable and useful in future considerations.

Definition 4.2: A point g €. M ~ M is called e-extender
relative to some closed set A, if there exists a non trivial
minimal join from A to g which can be extended minimally
by length & beyond g with the extension contained in

M ~ M.
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Crucial for most results in this paragraph is the subse-
guent lemma 4.1 which includes lemma 4.1'. Despite its
technical appearance this lemma 4.1 has a proef which

contains some basic geometric ideas of this paragraph.
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Lemma 4.1: Let 9, € M~3M and 1let r > O be such that
exp . : Kr(O) . equo(Kr(O)) c M~ 9M 1is a diffeomor-
phism. ) Then there exists €5 > 0 and for every
e € 10, EO[ a number B > 0 such that the following
holdss
If RZecM is closed and g € Br(qo) an e-extender with
respect to A, then

ET%é%é%%—ESTET) > B for all g € B% (qQ ,

if B35 ($)na=¢
2

Figure 4.1

1) Note K_(0) := {VEITq M / |v| < r}. Thus we have here
(o}

B (q) := {q' €M / dlg,q") <sr} = equ0 (KI(O)) © M N3M.
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Proof of Lemma 4.1: We shall give detailed conditions

for the number €, later on. Let us for the moment as-

sume that the point g ¢ Br(qo) is an t-extender relative
to A. Let € >0 be small enough such that B3€(q) na=g
and that Bs(q) is contained in a domain of giemannian

1)

normal coordinates around g. Pick a geodesic sphere
Sclq) == {y / dly,q) = €} , see the above figure 4.1
which we use to illustrate our considerations. Now
let g be any point with d(g,q) < % . The minimal joins

cq(t), ca(t) (going from q,a to A) will meet Se(q) the

]
[te

first time at points q_, g respectively, note c_(g)
s s q

The proof is performed in several steps.

1. Step: If is sufficient to estimate dlayq)

dl(qg,rqg)
from below because
(4.3) o) > min {l, % QL%LQL——~ }
d(ca(e), Cq(sn dlggr qg)

Proof of (4.3):

Assume (4.4) Alg) 0 <
d(Ca(S) r Cq(g))

=

Then we get

1) Note Be(q) c M N3M .
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(4.5)  alg,, o) 2 dlgg, cz(e)) - dleg(e), ay)

= dlegle), c(e)) = (e - dF, )

= dlegle), eg(e)) - (dlgga) - dg., @)
(4.6) Z dlegle), e () - a(q,q)
(4.7) > 2 dlegle), e (2)

Here (4.5) and (4.6) are derived using the triangel in-

equality ancé (4.7) is got using (4.4). Now (4.7) vields

d{g,q)
d(ca(e), cq(E))

a(q,q)

= 1
dlggr g 2

<

Tiis proves (4.3).

2. Step: Localisation.

The fact that

(4.8) the path cc(t) can be extended minimally hackward

up to the point q_ := cq(-E)

yields

(4.9) dlag, ) +dlgy, @ < dlg,@) + d(Ggq,) .

(4.2" 2e £ dlgg,q) - A(q,,a) + &g ,q.)
Proof of (4.9) and (4.9'): Now (4.8) implies (4.8') be-

low. Therefore using the triangle ineguality we get
(4.8") _
L + = Y g
(4.10) dla,q) + dlg_,q.) dlr,q.) ¢ dlr,qg) + dlagq.)

(¢.10") alr,g)) + dlg,, @ = a(2,q) < dlh,g) + dle,q)
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Summing up (4.10) and (4.10') we easilv get (4.9).
Inequality (4.9') follows immediately from (4.9) be-

cause d(qs,qc) = 2e.

In order to present the crucial ideas of the proof in a
transparent way we complete now first the proof of

lemma 4.7 in the Euclidean case.

Prooi of Lemma 4.1 in the Euclidean case:

If the ambient manifold M of M is a Euclidean space

then (4.9) vields

_ Ty. 26 .
(4.11) Sea) — for all 3¢ B (q) ,
qa_,q9_)
s'Zs €E=-p 0<p<e
1 1 : £
(4.11%) > % if pe 10, 2] .

We shall prove (4.11) later. Now we prove that inequality

(4.11') follows from (4.11). Let

- D —
. Voo o1+ 22 -1 A .= _E
h(z) := in . z(p) := =5 -
Then we have z(0) = 1, z(£) = 2. Thus h(z(0)) = h(1) > + ,

8
h(z(%)) = h{z) > % - A straight forward computation shows

that
gpz(o) >0, if 0<gp < % , with € > 0 , and that
€22 <o ,if 25> 0.
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creasing if O < p < % and z > O . Therefore

fz(p) /O <o <S)=101,20 anda (h(z) / zell,20)ely,
This proves (4.11').

Proof of 4.11: We have d(x,y) =|lx - yil,|! || the Eucli-

dean norm. Therefore and because d(qs,qa) = 2¢ inequality
(4.9) yields
(4.12) 2¢ < lta, - all-llag - all+llag - a.ll.
We go on to estimate the right hand side of (4.12). Apply-
ing the Taylor formula to the function

£(x) :=|lag = x||-llag - x|l

we get

2

= T ST - _ ‘
£@ =llag = all - la, - gll= £(@ +Df (@ -q + 3D (q- @2

P
with p apoint in {g+ t(g-q / t €1[0,11 1.

Now we have

Dpf(v)=—/qs-p ,v\ +/q B v\/

\lag — Pl V13, - el )
2 2 1 / \2 1 / >
D. f(v)® =—w———n (g - D, V o (V, V
P Hag - pl \'® > R
1 / = \2
———x (g, - P/ V) - /v, v
g, - ol NS ) [ER —pn )

A

2
o] A
i li{llqs -p” <—I _ p“ i<]]q - p| ’ ﬁ;V.>! j '

the Euclidean scalar product. This yields

~N

!
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lag- @l -3, - dl < 0+ 2 (G -0 - (@ -, &-q)
1
+]lg ~ qf] { =5t = }
- oL 2,
= %{qs' a-9)*lia-all
2
1, =
(4.13) < cllag - agllla - qll + £ OIlq - qi|

Now we use Thale's theorem to estimate the third term
in the right hand side of (4.12). Namely by Thale's theorem
the segments joining g, with as and gq_ with ﬁs meet

at ag with a right angle. Therefore

- _ . E— —
(4.1%) |3, - q ]| = J(ZQ) - 1@ - )
- 2
q. - g
(4.14%) < 26 (1 - % u—é———jfiL——d
(2¢e)
13 - agl®
(4.14) < 2 - 2=

de

Here (4.14') follows from (4.14) by Bernoulli's inequali-
ty. We use (4.14) and (4.13) to estimate the right

hand side of (4.12) and get

e 2
2o < Lla, - el 1G-all v s lE - el + 2o e Sl
- ltag - all TP ollag - gl
L Ii% - qH (4.15)
s s 28 i@ -ally g, - a4l
=P 15 al

Now a simple computation shows that
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1 . “1+A-1
(1 + Ay) 7R
"M+ A -1
if O<Y<T, A >0

Therefore (4.15) yields
- ! ﬂd +

llg - gll : E-p

- 1 i de

a.il p

s £e=p

2¢

1

This proves (4.11) and completes the proof of the Euclidean

case.

We proceed now with the proof of the general case of

Lemma 4.1.

3. Step: Estimation of d(qs, a) - d(és,ﬁ) with the

Taylor formula.

We chall give detailed conditions for Eo later. Let

£y > 0 be such that for all g € Br(qo) equ is a diffec-
morphism from the closed €,
contained in M~ 3 M, We use geodesic normal coordinates

ball in TqM onto its image

. . cs . . no__.,
with center g and we use the identification with R via

\ i

N\

these coordinates. Therefore || |, . \> are now the
/
Euclidean norm and the Euclidean scalar product relative

to these ccordinates.

£0x) := dlq_,x) - d(g,,x)

{

Then we have for ¢€ ]O,a1

fl{g) = 0
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and -
/9 - q | /9 - g ; N
D f(v) = (S ' V\ R ga—— , v> = 1 (g = C_, vV}
q i ps € s s

Vi -agl S Ma-g) o /4 ®)

Using the Taylor formula there exists a point

pe il ve Be(q) /y=qg+tlg-gqg), 0<t <1} such that

a) +

. ) _ 2
(4.16) < —llag - adl dlg-qgll+ »plig -4l

A

_ - - /_ _ 2 .= -
dlag,q) - d(qg,q) < \qs dgr 9 Dp flg-qg, 9-9q

if g ¢ B (g) and if
2

(4.17) P > sup {HDZ( a¢., M /7 alx,y) i%, x,y€B_(q) .

le)

q € Br(qo)}.

It remains to justify the existence of the bound P in

(4.17). For this let (x1(<i),...,xn(§)), g € B, (q,) be

an orthonormal moving frame on Br(qo) 1), see e.g. [66]

p. 7.17. Let KE(O) be a closed Euclidean ball of radius

€ 6]0,51] and let y = (y1,...,yn) , X = (x1,...,xn) be
vectors with their Euclidean coordinates.Assume x,y € KE(O).
Define a map

n
xiXi(q)), equ( E ini(q»),

n
¢ (g,w) = ¢lg,(x,y)) := dlexq ( L
=1 i=1

9
w = (le) r
then ¢{(g,w) 1is obviously a smooth map on

1) For instance for i€ {1,...,n} and g € Br(qo) define
Xi(i) to be the parallel translate along the unique mi-

nimal geodesic from g  to g.
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Br(qo) x (KE(O) X Ke(O)\ A.) if say

A, := {(x,y) € K_(0) x K_(0) / (| x-y || < f%}.

It is easily seen that
~2

5 2
;§;<b(q, (x,y)) = D(X,y)

da(.,.) with d(.,.) :Be(q) X Be(q) + R,
B.(q) being here the representation of {g' ¢ M / di{g',q) < e}
in Riemannian normal coordinates with center g. Therefore

we can define

a2

P := max {||
32

" olawll 7/ (q,weB (q) x (K_(0) x K_(0)~ Ag)

and P fulfills inequality (4.17).

4. Step: Estimation of d(qs, qe).
Let €4 be as above (in the third step). We claim that for

€ € ]0,81[ we have (respective geodesic normal coordinates

with center g) the subsequent inequalities
- 1 - 2
(4.18)  dlag,a.) < |18 -~ qli + 5 Q¢ellag - all

= .2
s m ™,
4e

(4.18") < 2¢ - qli

Qellqg - q

|
=

with Q being a positive constant depending on 61.
Inequality (4.18') follows with Thale's theorem and
Bernoulli's inequality from (4.18), see (4.14'). We
prove now (4.18). For a proof different from the following

one see Lemma A.,2 in the appendix.
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Proof of (4.18):

Let a(qs, &S) = o , see figure 4.2.

%

Figure 4.2

The Euclidean segment b from g. to és is in the Euclidean

plane E(q,&s,qs) b in polar coordinates described by

(4.19) £($) = s ' 0< ¢ < o with
o — -—
cos (3 -¢)

, see figure 4.3.

Figure 4.3

1) Note E(q,&s, q.) is the two-dimensional plane containing

the three points q,qsrqe-



We have for the length L of exp;T(b) R

o

(4.20) d(@@gq) <L = J"foz +g,,(x,0) dd
o

with I = g% and g22(r,¢) related to the metric in the

surface equ(E(q,ﬁs,qs) N Bc.(g)) . It is well known that

\ g22(r1¢) =r -

K the curvature of the surface equ(E(q,ﬁs,qe)) at the

r3+

| =R

point g, cf. Lemma A2 in the appendix.
Therefore there exists a positive number Q is depending on

€, such that

1

(4.21) |922| < 242 ord
holds on equ(E(q,qs,qE)ﬂ BE1(q)) if r € ]O,€1] ;

here (4.21) with that number Q is valid for arbitrary points
g € Br(qo) with as' q. being arbitrary points in

Sc(q) == {ge M/ dd,q) =€}, cf.: proof of inequality (%)
in Lemma A.2 in the appendix.

Let f© := Then (4.20) and (4.21) yield

o
d(c-ls'qs) _“C-Is - qe” < J‘ (\‘ 1._2 + r2 + 2Qr4 = W\f + r” ) dé=: A.
[0}

“"‘6.

Using Bernoulli's inequality we get

'
A< erﬁﬁd}b =: B
o 2Nt° +r .

1) We mean here the length of the projection of b in the
Riemannian manifold M.
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Inserting (4.19) and using trigonometric routine compu-
tations we get

a

a4 1
B<Q 4(a ) d¢
cos* (2 -4 «_ 2 y
° i Yt sing o+ = —
¥ms(5-¢) cos §—¢)
o
4
= 9 J a4 o ~———————1———ﬂ d¢
o cos (3 -¢) a’;,! 1
i 4,0
Y cos (7 - ¢)
a
3
=0 | Sy
cos (7 - ¢)
[0}
(s

= Q a3 [—tan (% - ¢)]O

= Q a3 2 tan % =: C .

Inserting (4.19') we get from the last equation

[g]
li

2 Q 83 cos3(%)

=29 e3 0052(2) sin 2
2 2

=20 e3 sin(%) (1 + cosa)

Qe 2 €2 (1 + cosa)

A

Y

; ) 2
5 0e llag - al

| A
|

This proves 4.18.



5. Step: End of the proof of lemma 4.1.
Inserting the estimates from the 3rd step and 4th step

i.e. precisely inserting (4.16) and (4.18') into (4.9')

we get R

(4.22) 2¢ g%llqs—qsll-llc} dl+ »llg-di®+

= 2
1
lag = qll° 4 - 2
€ -T+5Qdiqs - qSH

This yields

- - 2
1-20 e? < 4 lg - glf + dep la - 4l

= = 2
Hqs qsl| ||qs qsll
Thus
lg-gl , 1-20¢
g . - qgll” ‘g = o
las gl 4 (1 +ep 224l
19 ~ 9/
Choose €4 € ]0,81] such that 2 @ eg < % . Then
o il [
9s "9 8 (1+ep 24
!la - q||
S S

for € [O,so] . Now a routine computation shows that if

1) Note here €€ ]0,51] + 9 is an e-extender and (4.22)

holds if dl(q,q) <_% .
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then

1
8(1 +2ax)

This implies together with (4.23) that

- £

- 1+ S -1
g -qll ¥ 2 -
llag - agll 2P

if €€ ]O,so]

By Lemma A4 in the appendix there exist two positive numbers G,F such

that for every g € B_(qg ) and for all gq,, g, € B_ (q)
r o 1 2 €q

G dlays ap) <l @y = all < F dlgyr gy

with {| || the norm related to the normal coordinates with

center g. Therefore

d@q) _ , GHa-dl , 6 A+2ep -1
d(@g.q,) T F llag - qff FoseE

This yields together with (4.3) the following result:

If g € Br(qo) is an e-extender withe:E]O,eO] then

2

a , C=
(cq(e) Cq(E))

for all ge B_ (q)
2

This completes the proof of Lemma 4.1.
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Remark 4. In this paper we will make use 0f some identifications in
order to simpl1ify the notation. Namely if we have a chart (X,U)

Uc M, we will often identify a subset B< U with it's image X(B)

in R™; | | will always refer to the Euclidean norm 1) induced on

B by the Euclidean structure on X(B) < R".

1) Unless otherwise said.
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We proceed now to prove several results which will finally lead to a
somewhat globalized and sharpened version of theorem 4.1. For this
we give next a proposition which does not contain a proper proof

but explains concepts to be used in subsequent proofs.

Proposition 4.1 Let the Riemannian metric g be C**! on &, i.e. g
has locally Lipschitz continuous first derivatives. Assume there
fs a chart (X, U) with X (U)2C=>X (B (q.)), X 1(C) = M, C a compact
convex set in R" and o > 1. It is easily seen that there exist

numbers f , F such that for all g, g ¢B.(g,)s

f -d(a,q)<la-ql <F -d(q,q),
|'|_ being the norm related to the chart (X ,¥ ), see [77] p.29.
We describe now a Lipschitz continuous first order (system) differen-
tial equation for the geodesics in Br(qo). This differential equation
is used in lemma 4.2 below. For this denote the differential equation
for the normalised geodesics respective the given coordinates
(X ,u) by X-= T’ {x,X). This is a second order (system) differ-
ential equation. Introducing new variables x = Xy X = X, We get
a first order (system) differential equation

"1\( xp |

Lo
. ) =g
%) (x1,x2)} X,
Now using the local Lipschitz continuity of the Christoffel symbols

and the compactness of C it is easy to prove that there exists a

number L > 0 with
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) {x]] EES ih]\
g | -g <t ) for say all (xq#hy)eB {gq),
\%2 } Xpthy | Pl
!i]‘ . . [ %]
where . = xy] + |x,] and | = %)+ %],
M 1 2 « } 1 2
P02 {72
Note we use here also that we have IXZI 1= |x(t)} bounded for all

geodesic pieces contained in Br(q ) since <x,{g .(x)})x> =1 and

9”‘

because the Riemannian metric {g .(x)) is varying continuously with

g;},j
the footpoint x in the compact set Br(q ), <*,+> being the Euclidean

metric associated with the chart (X ,U ).
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Lemma 4.2: Let the Riemannian metric g have locally Lipschitz con-
tinuous derivatives. Let (X,U) be a chart for M, B = B < U with
X(B) compact and convex. Let L > 0 be a Lipschitz constant on B
for the geodesic differential equation with respect to (X,U).

let € >0 and c,c : [0,e] + B be two geodesics, and assume

2e Lefl <1,
Then for any 8> 0
(4.28)  e(e) - c(e)| £ Blc(0) - ¢(0)]
implies
(4.25)  1E(0) - &0)] < c(0) - E(0)] . max {1, 2 B2L

Proof: Abbreviate h := ¢(0) - ¢(0). A () == c(t) - e(t) ,
. . 2
by = é% Ah s b= %;2 b, - From Taylor's theorem

. 2
lag(e) = 8,00) = ea (0)] < €_2max (B (1) /0<t<el,

whence

2 .
(4.26) elA (0)] < (1+8) {8,)0)] +€_2max{mh(t)l /0<t<el
Now the Lipschitz continuity of the geodesic differential equation
of g(-) with Lipschitz constant L gives with
[8,(t)

. = o (t)] + (A, ()]
Vi () " "
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ap(t) | e tt)-ap(t) _lelt)

15, (0] < || <l N N
VB (t) €(t)-a,(t) L elt))

(4.26") L -t
<L {apft)] + lAh(t)l) <L OIhl+ fa,(0)])e

where the last inequality (4.26') isawell known estimation for the difference
of solutions using the norm of the difference of their initial values.
Hence we have
Lt
(4.27) IKh(t)l <L (lh] + IAh(O)I)e

We apply (4.27) to estimate |% (s)| in (4.26) and get
h

Le

(4.28) Tedp(0) < (8] + 1)0 h] + L ([l + |4 (0)))e ‘; e

If {Ah(O)] = 0 then (4.25) holds trivially. If IAh(O)I $ 0 we get
£

from (4.28) |h| + O because L .e ¢ % <1,
hence in this case we can write ]Ah(O)l = Kfhl. Inserting this
in(4.28) yields

Le

(4.29)  eKIh| < (B + 1) [l +%eK|h|L (1+Ne - ifKk>1,

L e
in case K < 1 we are done. Now we have L2e ¢ < 1,

Therefore (4.29) yields

esklhl < (Ble) + 1) [h] + 1 eKIn]  and thus Tk

A

g +1.

2 (B + 1)

This gives K < .

and completes the proof of (4.25).
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It is obvious that already the combination of Lemma 4.1
and Lemma 4.2 yields immediately the result "an extender
is a Lipschitz point". Thus we have now one part of

theorem 4.1 i.e. the subsequent.

Corollary 4.4: Let q, € M . Let r > O be:such that
Br (qo) c M~ d and that Br(qo) is contained in a
domain of normal coordinates centered at q5- Then we
have a positive number p and for every € €10,p] there
exists a number Q(e) > O such that the following holds:

1)

If AcM is closed and g € B is an €-extender

r(qo)
3
5 € then

with respect to A and d(q,A) >

5 - &= alq,q
Icq ql_< Q(e) (q,q)

for all ge¢ BE (q) .
2

Here éq, éa denote initial vectors of normalized mini-
mal joins cq(t), ca(t) from q¢,q to A respectively and
| |refers to the norm induced by Riemannian normal coordi-

nates around 9t

1) Note B (q.) ="{g'eM/ d(q ,q') <r .
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Proof of Corollary 4.4.:

Let Br(qo) be contained in a domain BR](qo) of
Riemannian normal coordinates contained in M ~ 3M. Take

R € Jr, R1[. Apply Lemma 4.2 with B := BR(qO). If L is
the Lipschitz constant with respect to the Riemannian
no~mal coordinates on B, choose £q € 10, R - rl such that

L

2e;L e®" < 1. Then

For any B > 0, ¢ € ]O, 81[ and geodesics c¢,c :[0,e] +M
with c¢(0), c(0) € B,(q,) the inequality
(1 le(e) = c(e)] < B|c(O) - c(O)]|

implies
1 4+ B

|2(0) - E(0)] < max {1, 2 b le(o) -3(0) |

Apply Proposition 4.1. There exist £,F > O such that
(2) f d(q,@ < |g-q| < Fd(q,q for all q,q€ Bpla,) -
By Lemma 4.1 there exist £, > O such that

For every ¢ € ]0,¢e[ there exists a B > O such that:

(3) If AcM is closed, q € Br(qo) is an e-extender

d(q,A) > 3 ¢, § € By(q), then

1 -
d‘(qu(E), Ca(&)) < '6‘ d{g,q).
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Now put p:= min{eo,e1}. For & € ]O,eo[ choose B > O
as in (3), and put
1 + Bf

Q(e) = F . max {1, 2 T

} .

If A cM is closed, g € Br(qo) an e¢-extender with respect

to A, ¢ € Jo,ol , dlg,B) > % €, @ € Bglg), then

Y]

.
A

™w

i

max {1, 2 ——g—-—J}]q -q|

1 + Bf -
max {1, 2 —E—§§*'} Fd(q,q)

™| A

)

= Q(e) dlg,q) .

This proves Corollary 4.4.

Remark 4.3: In the above corollary Q(e) is a positive
number depending on €. It is not difficult to see that
Q(e) can be choosen to be a continuous function of €
and such that Q(e) is monotone decreasing if € is grow-

ing.

Remark 4.4: Note that we did neither claim nor prove in
corollary 4.4 that an initial vector of some minimal

join going from a point g to A is uniquely determined by



that point g # q, dl(q,q) < % . Indeed this need not

to be the case, see the examples described in figure 3.2
and figure 3.3.

Using corollary 4.4 we give in the following theorem

a sharpened version of Lemma 4.1.

Theorem 4.5: Let D be a compact subset of (M,d) and as-

sume there exists a number s > 0 such that

Dy := & €M /dxD) <s} cM>M

Then there exists a number Y > 0 such that the subsequent

statements hold:

a) We have a continuous function

(lo,»[ x [0,8]) 2 (g,s) » a(e,s) € 10,=[

with the following property:

If AcM is closed and g €D 1is an e~extender relative
to A then

1)

a(q,q)
4 , C=
(Cq(s) cq(S))

> OL(EIS)

for all g with d(q,d) < 3 min'{y,e} if

(B3 {(q) v cq {o,s1 v ca[O,s]) n a=¢.

—2~€

The function a(e,s) 1is monoton increasing in the
variable € and monoton decreasing if the variable s is

growing.

1) cq(s), ca(s) are normalized minimal joins from g,q to

A respectively.



b) Let D := ‘{x € M/ da(x,D) <Y} and assume

b3 a u(g) € [0,s]
is a Lipschitz continuous function. Then we have

a continuous function

(Jo,=[ x [0,81) 3 (e,ulg)) = Q(e,ulg)) € Jo,=I

with the following property:
If any point g €D is an t-extender relative to R
then

d(q,q)
d(cg(u(@), c§<u<é)))

> f(e,ulq)

for all g with d{g,q) < % min {y,e} if

(B%E(q) v oy [o,u(s)] v ca[o,u(a)] n aA=¢g.

The function f(€,u(g)) is monoton increasing in the
variable € and monoton decreasing if the variable u(g)

is growing

Remark 4.5: Theorem 4.5b) includes theorem 4.5a) as a
special case namely take the function u(.) constant

and equal to the number s. Nonetheless we think that
theorem 4.5a) is of interest per se and we use the proof

of theorem 4.5a) in the proof of theorem 4.5b}.

Proof of Theorem 4.5a): Let

equi =3 Xi : Bé(qi) -+ Kﬁ(O) < TqiM ’

be normal coordinates with center q; and Bd(qi)c M N~ M,
KS(O) :="{w ¢ Tq M/ fw| <8} . We shall sometimes identify

i
BS(qi) with KS(O) . Let < ,> be the Euclidean scalar
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prcduct in T_M and let S RARRELN be an orthogonal
i
basis in Tq M. We identify Tq M with R®- Define
i i

'x:.i(q) = <X, (q) , ey >

for all q € Bglg,) and every j € {1,...,n} , n := dimM.
The subsequent bijection gives obviously a trivialisation

of TBa(qi).

n
(K, (0) x RM)3 (X, (a), :

Thus we can define

i -
exp : (Ba(qi) b'e Rn) - M

by

i o 3
exp (q,v) := exp (L <V,ej>( —) )
9 5=1 %3 g
i
Clearly since Dz cM ~ 3M we have d(D,3M) > s
Let s' be any number such that d(D,3M) > s' > s
It is not difficult to see that for every q; € D there
exists a positive number 61 such that

(4.31) M~ M :expi(BG.(qi) x K-s-.(o))(*;*)

1
{equ(wq) /| wq] g<S 9qE€ Bﬁi(qi)} =

(%) (#%) - - _
= Bg(q) = {geM/ aq, BG.(qi))f—S}

1
qEBGiMi)

Note (#) and (##) here are trivial equalities. Since
D is compact there exists a finite number of points

g,, 1 <1 <n such that \Q/ B (g,) =D .
1 = = " 1 i
1<i<n §6i
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We shall apply corollary 4.4. So as in corollary 4.4
there exists for every ball Bs (qi), 1 <1i<n anum-
i
ber p.. Define Y:= min{d ., p, /1 <i <n }.
i i i -7 =
Let geD be an e -extender relative to A and assume
a(a,q) > %e . Clearly for some i¢€{1,...,n} the point

g€ By (qi) . Define €' := min {e,Y}. Then

371
by corollary 4.4

(4.32) | &, - &l = Qe dlad)
for all g with dl(g,q) < % min {e,y} , | |; the nomm

related to the normal coordinates with center qy and

& é& injitial vectors of minimal joins from q,& to

q’
A respectively. Defining

Q(e) := max {Qi(e') /1 <1i<n}
it is easy to see that
lo,»[ 3 ¢ =~» Qfe) € 1o,=[

is a continuous function and Q(e) is monoton decreasing
if ¢ is growing because the function Qi(E) have those
properties, see remark 4.3. Therefore if g is an e-exten-

der relative to A then we have for some i€ {%1,...,n}

1 . - A pul
(4.321) ]cq qui < Qle) dlq,q)
for all q with d(g,q) < % min {y,e} , if d{q,a) > %e .

By Lemma A.3 in the appendix thereexists a number Li such that
i = i,= = = =
d(exp (q,s%), exp™(q,v) < L, (d(q,q) + [v-v|, )

holds for arbitrary (q,v), (q,v) € (B (qi) X Kg.(O))
i
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Now if v = éq1) then

. n N
expt(q,sv) = exp (s I w,e.> | % ) ) = cqls)
j=1 7 %] g

Hence using (##%) in (4.31)
d(cq(s) ' cc—z(s)) S Ly (dlg.q) + Ic':q - é(—ili s )

if ©

I A

s < 5 . Therefore if L:= max { L, /qg=<1iz<n}

then if g € D is an e-extender (4.28) yields that

dleg(s), czls)) < L1 + Q(e) s) dlq,q)

a(
holds for all g with élq,q) < % min {y,e} and 0 <s < g

This proves theorem 4.5a if we define

1

af{e,s) 1= ——
L(1 + Q(e)s)

Proof of Theorem 4.5b: Using the notations from the

above proof of theorem 4.5a) we get

a(q,q) s _4(g,9)
d(cq(u(q))), ca(u(q))) d(cq(u(q)), ca(u(q)))’rd(ct—l(u(q)),c&(u(q)))
d(g,q)
d(cq(U(q)), ca(u(q))) +lulg) - u(g)|
(4.33) > d(g,q) _

d(cq(u(q)), ca(u(q))) +L, dl(q,q)

with L, being a Lipschitz constant of the function

q = u(g). Now theorem 4.5a yields

1) Recall as in corollary 4.4 and in (4.32) éq is identified
with the representation of that vector relative to the

normal coordinates with center q; -
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1 . =
"B sa {e,ul@)) if L dlg,9) < d(cq(u(q)), ca(u(q)))
A >

1A

l ;—-L if L, d(q,q) d(cq(u(q)), ca(u(q)))

Therefore defining

1_

(e, u(g)) :=min { 5T

, 3 ale, ul@)},

then (4.33) proves theorem 4.5b}.
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We have already proved one part of theorem 4.1 namely the result
"an extender is a Lipschitz point", see corollary 4.4. Now we are
going to treat the converse direction of this statement in theorem
4.1, i.e. we prove “a Lipschitz point is an extender®. This result

follows immediately from the subsequent

Lemma 4.3: We assume that the Riemannian metric on M has Tocally
Lipschitz continuous derivatives. Let A be any closed subset of M.
Let 9 € M~ (3M U A). Then there exists R > 0 and for every
K>0 and V €10,Rl a positive number &' such that the following
holds:

(1) There is a chart (X,U), withMo U> B3R(qo) = {yem| d(y’qo) < 3R}
and X(U) 1s a convex and open set in R".

(11) If q € By(q ) and for all g €8 ()
(*) I¢q - 3l < Kd(g, )

then q is a &'-extender relative to A; here | | refers to the
EucTidean norm related to. the chart (X,U) and &q’ éa are
initial vectors of (non trivial) normalized minimal joins from

9, 9 to A. 1)

Proof of Lemma 4.3: The claim of (i) is trivial. By proposition 4.1

we have two numbers f, F such that
- q. |

holds for alil 45 9, € BSR (q), | | being the Euclidean norm

related to the chart (X,U). Further we know by proposition 4.1 that

1) We assume here that for all g€ B ,(9) there exist non trivial mini-
mal joins from q to A.
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there exists a number L being a Lipschitz constant of the first
order differential equation g(-) for the geodesics in B3R(q).

The differential equation g{-) is a first order system which is
given in local ccordinates respective the chart (X,U), see pro-
position 4.1. Now Tet q be any point in BR(q). We claim that the

point g is a §'-extender, with

Lonin 3, V,R}) > 0,

(4.35) &' := (3

if wedefine &§ > 0 by the equation

(4.36) (1+%) A
7 Let §€130, 6'] and denote the normalized geodesic backward extension
of cq(t) by ¢(s). This means . ¢(&):= q and tE(s +8) := cq(s)
for all 0 < s < d(A,q). We have to prove that &(s) with
[0,d(A,q)+8]3s » &(s)EM is a minimal join from c(0) =: x to the
set A. For this let cx(s) be any normalised minimal join going from
the point x to the set A. Because of technical convenience in our
subsequent considerations we introduce the following mappings
¢: [0,8]38 » ¢{s) := €(s-5)
v [0,8]ss - wls) := ¢ (&-5),
thus ¢(0) =g, ¢(8)=v(s) = x.
If now {o(0) - ¥(0)| = [e{0) - q| = 0 we are done, since in this case
the length of the minimal Join y equals the length of the geodesic
extension €(+), because here those subpaths of Cyo € which join q
with A are both minimal joins, thus both have equal length d(A,q).
Therefore let us assume }¢{0) - ¥(0)| = lq - v(0)}] # O. Further
let €4(0) be that subpath of Cy such that ¢

+(0) is a minimal join

from v(C)} to A thus
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o) 1= -4 :
¥(0) v{s) equals the tangent vector €0(0) of €4(0) at

ds|s=0

the point w(0). We also denote ¢(s) := L ¢(s) and have analogous
ds

to the preceding consideration that -¢{0) = ¢ = éq. Now since

¢(0)

C¢(O) is a minimal join from ¢(0) to A with

(4.37) d(q,4(0)) = d(e(0),u(0)) < 2§ 5_% min{s ,V,R } we get using

( « ) and (4.34) that
{+)

(4.38) I&q - éw(o)l = 19(0) = ${0)] < Ked(q,¥{0)) <= [el0) - v(0}]

= |}

where (+) holds because of the left hand side of (4.34) From (4.38)

we get
(4.38")  14(0) - $(0)] <_§ 16(0) - (0}

We use in the sequel estimates similar to those in the proof of lemma 4,2

(see also proposition 4.1, to clarify the background}. First
abbreviating % =: K we get by (4.38") that
o(0) Rpl0) ) )
(4.39) ) fel0) = w0 1¢(0) - w(0)} <
16(0)) w{0)]

< {1+ K)+e(0) - 9(0)}

Now since the differential equation g {+) of the geodesics fulfills
a Lipschitz condition with Lipschitz constant L we get using (4.39),

(4.35), (4.37) that
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. lo(s)) fu(s)}
te(s) - wls) + la(s) ~ #(s)] =: }] l o P B
e(s) {u(s)]
~ Ls R
< {1+ K)-19(0) - 4(0)] e with say 0 <s <73 , seealso

inequality (4.26') in the proof of lemma 4.2. Thus

- Ls
lo(s) = (s} < (1 +K)+le(0) = v(0)] e with 0 <'s <& . Hence

fels) - wls)]

| v

1600) - w(0)] - F 14(t) - ¥(t)] dt
0

v

~ L&
> [ol0) - v(0)] - {1+ K)<fo(0) - v{0)]. e -5

This gives

(4.40)  fe(e) - w(8)] > (16(0) - v(0)] % ) >0 since
~ Lo
[T+Kle 8¢ } because of (4.36) using 0 < 6 < 8 <

wlo'l

and using the definition of K. However (4.40) yields a contradiction
against ¢(s) = v(8) = x, thus |¢(0) - ¥(0)| must be zero, which

proves lemma 4.3.
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Remark 4.5: a) Note we did not require in Lemma 4.3 that the initial
vectors of the normalized minimal joins going from q, q to A are
uniquely determined by the points q ¢ Bv(q). Although this uni-
gieness holds by (*) automatically at the point q, this uniqueness
need not to hold at points § ¢ (B,(a) ~{q}) see e.g. figure 3.2

and figure 3.3.

b} The size of b) is of little significance for the (optimal)
size of &. ITf M is a flat two-dimensional cylinder, A a
generator, then CA is the "opposite" generator. Every
minimal join from ge M~ (A v Cy) to A is a &-extender,
where § = d(q,CA) can be very small. On the other hand,

when using isometric coordinates, K = 0.
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Corollary 4.5: Let D be any compact set and assume D <M~ 3M,
Let A be any closed subset of M, then there exists a number

r > 0 and for every (K,V) € 10,=[ x 10,r] a & > 0 such that
for all 95 € D the following holds:

(a) B3r(qi) is a domain of Riemannian normal coordinates

around g; and BSr(qi) oM ~3M.

(b) If q €B.(q,) and if for all g €8 (q)
l¢g - &l < K d(0.9)
then q is a S-extender relative to A. Here | li denotes the
norm related to Riemannian normal coordinates with center
95 and cq, ca denote initial vectors of non trivial nor-
malized minimal joins from g, q to A respectively. 1)

Proof of corollary 4.5: For every point q € D there exists a

number rq > 0 such that B3r (Q) € M~ oM and B3r (q) 1is
contained in a domain of Riemannian normal coordinates with center
q. Since D is compact there exists a set of say m points
{ql,‘..,qm }=: FeD such that
Bl (qi)c M~ 3aM,
7'
with ry = rq . Using the continuity of the injectivity radius

L
{see theorem 5.5 in § 5) it is obvious that there is a number

——

1) We assume here that_for all g € B ( ) there exist non trivial
minimal joins from q to A.



¥ > 0 such that for all g€ D B3F(q) is contained in a do-
main of normal coordinates with center q and B3r(Q) c M~3M .

Now define

. . 1 . R
r :=min {¥, Fmin ro,.Lry n

then for all aq; € D B3r(qi) is contained in a domain of

normal coordinates around a; and BEr(qi) < M~3M . This proves (a)}.

We proceed now to prove (b). We shall apply Lemma 4.3. By
Lemma 4.3 there exists for every point a € F a positive valued
function 8} (R.V), (K,V) € (10, @} X 10,r] ) with the following

property:

(4.41) Every point g €B_(q,) is 83 (K,V)-extender if

¢ - ¢ <Kdlg,
&g - &5l =K dlasq)
holds for all q € B,(a) ; | |y denotes the norm related

¢

to normal coordinates with center 9y

Define

(4.41a) 3(K,V) = min {65(K,V) | 1 <z<m}.
We shall apply Lemma A.5 from the appendix, too. By Lemma A.5 there exist

for every % €{ l...m} two numbers Lys GQ such that for every point

a; €8y (g;) and for any two points gq,q € B, (4

7"

(4.82) e - ezl, < Ly fe

j)

q " Cq IJ + 6y d(q.q)

Here éq, éa are initial vectors of normalized paths

cq(t), ca(t), cq(O) = q, ca(O) =q and | [;, | Ij the norms

related to Riemannian normal coordinates with center 9, qj

respectively. Define
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]

(4.423) L :=min {L, |1 <%<m}

[}
[

=min {6, 1<2<m.

Now let 9 be any point in D and let g be a point in Br(qi)'

Assume that there exists Ve 10,r] such that for all g€ Bv(q)

|Cq - C'l‘ <_ K d(Q:a) s

q'i

| ti the norm related to normal coordinates with center q..

Clearly there exists a point a, € F such that a; € B1 (qg) .
1

Hence q € BrE (ql) because r S5y Therefore

using (4.42) and (4.42a) we have

leg - t5 1y < KL d(a, q) + & d(a.)

for all g € B,(a). Thus
v m Ao L . py
leg - ¢5l, < (KL + &) d(a, §)
for all qe¢ Bv(q). Therefore by (4.41) and (4.4la) there exists a
positive number
§:= 8 ((KL + G), V)

such that q is a é-extender. This proves (b) and completes the proof

of corollary 4.5.

The following result illustrates theorem 4.5, it yields a cri-
terion for a point to be a non-extender or equivalently a non-Lip-
schitz point. Indeed using similar considerations 1ike in the proof

1
of theorem 4.5.a) it is now easy to prove -)

1) One has to apply arguments like in the proof of theorem 4.5.a) in
a neighbourhood of the geodesic segment cq[O,so] below.
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Theorem 4.6: Let A be any closed subset of (M,d),
let q be any point in M ~ (A U3M) and Tet a be a sequence
of points with lim d(qn,q) = 0. If there exists some s > 0

such that
(4.43) cq[O,so] cM~ (3M U A) and

(a.47) 1im 40909 o
T dlegls0)eg (5,)

cq(s), an(s) normalized minimal joins from q, a, to A,

then q must be a non-extender relative to A. Thus q is a non-

Lipschitz point by Lemma 4.3.

We discuss now the preceeding result. Note in case we omit condition
(4.43) in the assumption of theorem 4.6 then it is possible that
q is an extender relative to A and (4.47) holds, too. In this case

we have necessarily

(3) cq{10,5A(EMUA) 4 £

Here now it may happen that cq([O,so])n(aMuA) = A. Namely take e.q.
for M the Euclidean plane, let A contain only the origin 0 and let

9 be a sequence of points on the unit circle, a, converging against
a point q. Now if we choose Sg =1, we have the wanted situation with
cq([O,’l])nA ={cq(’l)} = {0} = A.

If we assume aMncq([O,so]) = then (j) implies cq([O,so])nA $ 0.

In this case here we get cq([O,so])mA = {cq(so)} because cq(s) is a
normalized minimal join from q to the set A.

One, short glance at figure 3.1 or figure 3.4 will convince the reader
that even in case A is a point it is not hard to give examples for

the following situation
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{J') "Condition (4.44) holds with q being an extender while
cq([U,so])ﬂA = g".

Clearly we have by theorem 4.6 that (j') implies cq([O,sO])naM + 4.
Here it is natural to ask whether (j') also implies that
cq([O,sO])naM contains a branching point relative to A, see definition 3.3.
We are inclined to think that the answer to this question is

yes.

We started §4 with the reference to a classical result for unbordered
manifolds. That result can in our terminology be also expressed in
the following

Theorem 4.7': Let the point q be a non-extender relative to some
point p. Then q must be a conjugate point relative to p if q is not

a pica relative to p.
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A proof of this result exploiting directly the geometric fact that
g is a non-extender can e.g. be found in [45 ]p.97. We show here

for an unbordered manifold the following

Theorem 4.7: lLet q be a non-Lipschitz point relative to some point

p. Then g must be a conjugate point relative to p if q is not a pica
relative to p.

In our subsequent proof of theorem 4.7 we do not use the geometric
non-extender property of the point g but use directly the non-Lipschitz
point property of the point q and employ the contraposition of the

mere analytic lemma 4.2. Of course theorem 4.7 implies within our
setting the classical theorem 4.7', since we know that a non-extender
is a non-Lipschitz point because we proved in lemma 4.3 the contrapo-

sition of this implication.

Proof: Since q is a non-Lipschitz point, we have a chart around q

and a sequence g, such that

(4.45) 1€ ,(0) - c'qn(o)l > n+d(q,q,), neN

with lim q_ = g, éqn(O), éq(O) initial vectors of minimal joins from
g, q, to p, |*] the norm related to the chart. Further since q is
not a pica relative to p, we have lim éqn(O) = éq(O). Therefore we
get for the endvectors of the normalized minimal joins cq (t), cq(t)

n
that
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(d{q,p)) e T M,

(4.46) lim cqn(d(qn,p)) =< b

. d
c (t) = =—c_  (t)
qn dt qn

Using Lemma 4.2 it is easily seen b that (4.45) yields the existence of
a number R such that

(4.47) lcgle) - cg (e)] > Renlg - qpl

9
holds for sufficiently small ¢ > 0 and large enough natural numbers

neN. Now 1ift the geodesics cq (t) via expp to the tangentspace TpM.
n

Denote the 1ifted geodesics by Ea (t); note we have here
n

Epr(Ea (t)) = {t) . Now if g = Ea(O) is not a critical point of the
n

c
9
exponential map expp, then expp gives a bi-Lipschitz homeomorphism of
a neighbourhood U of G onto a neighbourhood U of the point g. There-
fore (4.46) implies for sufficiently small ¢ > O and large enough
numbers neN that Ea ([0,e]), Eq([O,e])= U. By elementary plane geo-
n -~
metry (say e.g. the Strahlensatz) we have in TpM nu

(4.48) |Ea(e) - Ean(e)lp <lg-q the norm in TpM.

REDR
Now (4.48) yields a contradiction against (4.47) because of the bi-
Lipschitz homeomorphy of the map expp/G:(U,l-lp) + {U,}+1). There-

fore § can not be a regular point of expp. This proves theorem 4.7.

We proceed with a discussion on conjugate points in the cut locus.
0f course there may also exist picas in the cut locus CA which are
conjugate points, e.g. the north pole on the standard two sphere

if one defines A to be the one point set containing the south pole. -
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Note we use the expression conjugate point also in relation to sub-
manifolds or in relation to arbitrary closed sets. We always mean
by a conjugate point relative to a set A either a singular value

or say more general a substitute for a singular value of the exponen-
tial map relative to A, where this exponential map itself need not
exist{ So one might say more precisely singular point relative to

A instead of conjugate point. However we will not be pedantic in
this terminology question, since we believe that our intentions are
always clear from the context. - The following definition seems to
describe the desired intuitive content in order to characterize a
conjugate point in the cut locus CA in case A is a closed set and

3M 1s not necessarily empty.

Definition 4.3: The point ge(M\aM) is a conjugate point in the cut
Tocus CA, if there exists a sequence of points 9 Tim a9, = 9 and
a positive number Sp such that the following conditions hold: We
have

dlq .q)
(4.49) vim ——— =0 and

Icq - cqnl

(4.50) for some s¢]0,sq[ is cqi([a,so])ncqj([c,so]) =g
for all i,jeN with i # j, cq (s), cq(s) normalized minimal joins
n
from q, g, to A and cq([O,sO])C M~ (3MeA) , |*] the norm related to

some appropriate chart.

1) See definition 4.3 below.
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Remark 4.7: Condition (4.49) in the preceding definition can be re-

placed by the intrinsically described condition

d(q.q,)
lim ————— =0 , because of theorem 4.6. - It is not

d(cq(so),cqn(so))

difficult to see that definition 4.3 really describes a 'classical
conjugate point' in the cut locus in the special case that A is a
smooth submanifold of an unbordered complete Riemannian manifold.

We omit a proof of this statement since it is irrelevant to the sequel.
Suffice it to say that the proof being technically similar to the

proof of theorem 4.7 uses the fact that there exists a subsequence

of the segments (cq [s,sol)n which converges against the segment
n

cq([s,so]). - Note in case M %+ @, exploiting the branching behaviour
of minimal joins, one can easily give examples where for some s > 0

the sequence (cq ([O’S]))j does not contain any subsequence converging
J

against the segment cq([O,s]), while lim q, = q and lim éq = éq.
n

This situation is obviously impossible in case 3M = @. Of course
in this context it is natural to ask how to define an arbitrary con-
jugate point relative to any closed set A in a bordered manifold.
One has to modify definition 4.3 for this purpose. In this case the

paths cq (t), cq(t) in definition 4.3 are not any longer necessarily
n

minimal joins but geodesics from g, to the set A. Clearly also

g
n
in this situation condition {4.49) and (4.51) should hold.However,

one also has to impose a condition on the lengths of the geodesics
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cq (t), cq(t) say at least that the sequence
n

t_ := min{s | geodesic c_ ([0,s])nA # @1 converges againstt .
a, Q, q

Otherwise geodesic spirals which are dense on the flat torus
give material to construct examples where the description by (4.49)
and (4.50) alone does not agree with the classical definitions in

case aM = @ and A a submanifold or even a one point set in M.
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§5 APPLICATIONS

In this paragraph I want to apply results of §3 and §4 in or-

der to derive several theorems. Some of these theorems are well-
known. However giving new proofs for these theorems I want to
show that the technics used in §3 and §4 which were originally
developed to investigate cut loci in bordered manifolds give also
a common frame for results of Jacobi, Bangert, Federer, Klein-
johann and R. Walter which belong to appearently different topics. During the
whole paragraph unless we say anything else let (M,d) be a space as assiumed
in corollary 4.4. Let A be any closed set in M. The combination

of theorem 3.1 and corollary 4.4 yields immediately.

Theorem 5.1: The gradient of the distance function d{(A..)

is Jocally Lipschitz continuous on M~ (CAU 3M u A).

Remark 5.1: This theorem makes it possible to apply the Gauss-
Bonnet theorem to pieces of distance hypersurfaces relative to A

which do not meet CuUaMuA , see also (3Bl page 343 and VZ]pZO-Zé).

Using theorem 4.5a we give next a new proof of a well known theo-
rem i.,e. the subsequent theorem 5.2 a special case of which is
a famous result of Jacobi, see also l16] page 231. All proofs
known to us for theorem 5.2 as well as for Jacobis theorem use
second variation and index form technics, while we do not use

these methods here,

1) These authors prove and use the Gauss-Bonnet theorem under
weak regularity assumptions. See in particular [38(3.7) Satz
and cf. theorem 5.7 in this paragraph.



Theorem 5,2: Let S be a (%-smocth k-dimensional, closed sub-
manifold of a complete unbordered n-dimensional (% -smooth
Riemannian manifold M, ke {1,...n-1)}. Let LS be the normal
bundle of § in M . Let for some s;>0 expglsgNyl=q be a singular
value of the exponential map exps defined on the normal bundle
i.e. expg: LS —= M, expglONp)l=p being the footpoint of the unit
normal vector Np. Then the geodesic gls):zexpgls Np) is not any lon-
ger alpqylz}) minimal join to S fer any number $>5p

Remark: Jacobis theorem differs from theorem 5.2 only in so far
that the submanifold S in theqrem 5.2 is replaced by a single
point p . Thus we have here dim Sz dim{p}=0 ano this violates

our assumption 1< dimSs{n-1} in theorem 5.2. However theorem 5.2
yields easily Jacobis theorem if we take in this case as sub-
manifold S instead of the point p a small distance sphere

Selph:= {xIxeM, dip,x)=7r3

Proof of theorem 5.2: The proof is performed in several steps.

We start with a description of the geometric situation used in
the proof and we introduce notatiocns. Let us take a chart for
a neighbourhood U of the ray {sNpls20} in the normal bundle LS, with
I-1; being the norm related to this chart. We can assume that
in this chart UnS 1is an open subset of a k-dimensional plane H
in the chart space and that all fibers of LS with footpoints in
UnS are orthogonal to H in the chart space. Identifying (UnLS}
with the related subset in the chart space we can assume that
the exponential map of the normal bundle i.e. exps: U N LS -» M

maps segments orthogonal to H on geodesics of equal length.

1) This means every neighbourhood of the geodesic piece g[0,s]
contains paths joining S with g(s) and those paths have a
length shorter than s. See the remark after the end of the
proof on page 122. ‘
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The point p corresponds to the zero vector in the chart space.
Since S is C(’-smooth we have that exps is ('-smooth and this
is sufficient for our subsequent considerations. According to
the assumption of theorem 5.2 expsispNpl=q is a singular value
of the exponential map exps « Clearly it is no restriction for
theorem 5.2 if we assume that ﬁ::sng is the first critical
point of exps along the ray {sNpis203. Now let v be a vector in
the kernel of the differential Dexpgl§) thus (Dexps(§))iv)=0

We identify v with a vector in the chart space of UnLS |, Let
Equ) be the normalized tuclidean segment in UnlS which is con-
tained in that ray of LS which joins §+v with S, thus T, {0)= §ev .
We define aﬁshsqus) » thus Ei00=3 . We introduce the
following notations for the paths exps(ﬂvhn = g ls) , joining

in exps{Unls) the points g, :=expgii+v), q:= expeff) with S by geodesics
corresponding to rays in the normal bundle UniS | By propo-
sition 4.1 we can choose a chart (Kig,i-1) for a neighbourhood

of q§ such that there exist positive numbers aob with

(5.1) 0 d19,,9;) £ 19,-q,1 < b dlq,.q,) forall q.9,¢ Klg),

I'1 the norm related to the chart. We will use below fFor the
geodesics in Klg) the first order differential equation described
in proposition 4.1, L>0 being the related Lipschitz constant.
Now for a sufficiently small positive number t; we get

cqv(t) € K(q) for all t € [0,t;] and v with |v|1 <t,
We use notations like in lemma 4.2 namely g-gy =:hy, Colt) - cq lf) =: An (1),
anatogous % Ahv(f) =2 Ahv(f) . dlt:Ahv(f) =: .A.hv(?).

For the proof of theorem 5.2 we procede now in four steps which

we show seperately at the end of the proof.
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Step 1: If we choose a positive number f,< min {1,?,} such that

(5t Le‘) < 5, then we have
(5.2) 21h e 18001 2 L H1A, (001

for all positive numbers tst, and vl st, .,

Step 2: There exist three positive numbers R,T,fg;-f'si};gsfz

such that
(5.3) dicqlf), e lf)) 2 Rivly

holds for all v with Ivlist,.

Step_ 3: Using the results proved in step 1 and step 2 e
show there exist two positive valued functions

[kernel: Dexpglgll Nav — &iv), (0F13F —= £(F)

with ‘lim 8tv)=0, tim f(f) = 0 such that
v-0 t-0

), cq, F -
Alcqglt) . qult) ) (E) ¢ (_” < b{v)e f(f)ll) for all v with Ivly < t;
d g, cq, (F) )

Step 4: Let Fe (0,T] . Assuming that ¢qf) is an extender relative to S
we find a positive number ‘q(.i") such that every geodesic piece
tqvlT.?* d(S,cqv(T))l is a minimal join from tqv(7) to S, for any

v owith Ivls yib).

lsing the results got in step 3 and step 4 together with
theorem 4.5a we prove now the claim of thecrem 5.2. lie argue
by contradiction, For this let € be any positive number and

assume the point ¢ is an €-extender relative to S . We want

1) Those functions &(v), f(E) will be technically useful in
our proof.
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to derive a contradiction. Tothisend choose Fe (0,1) so small that
fifis +-«(gF) , This function «(,) was explained in theorem 4.5z .
Further choose v#0 so small that both conditions ’”1‘26) and
&v) s-%m(sf) hold, Now since q 1is an g€~-extender relative to S
the point cqﬁ) is an e-extender relative to S too. Using the
result in step 4 together with the condition Ivks Qﬁ) we get
that the geodesic pieces %v[7,7¢d(s,%vﬁm are minimal joins from
c“(i) to § . Therefore exploiting theorem 4.5a we get

d{cgth), o (TN
dlegFe(F-TN, o (Fo (F-T1)

2 (e F-T) = olg,F) >0

However, according to cur conditions for t and Ivl, , we get from

the result in step 3 that

d(%(p,QVQ)) < %T & (e.1)
dlcqlt), gq,(t))

This is a contradiction.

Proof of the claim in step l: Put A(s) := Ah (s). Recall from
. v
(6.27) |&(s)| <L (|a(0)} + [|A(o)De't forall 0 <s <t.

Therefore, by Taylor's formula

()] >t [A0)] - [a(o)] - 5 P Ll ago)] + [a(o)[) et
=t |A(0}] (1 - étLeLt) - 18(0)| (1 + 3 t% et
2 2ulbo)] - 2 | 0]

for 0 <t < t . This proves the claim in step 1.
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Proof of the claim in step 2: 1In our chart UnlS the paths

E'qv(f) and Cqft) yield Euclidean segments. Therefore the tangent-

vector 'BdTEva:%qv(”:éqV(M is constant. This gives

F ORI R ~ t A ~ i ~
1T (1) -8, P11, = 184000+ OS Fol0) dt - (E,(0) chV(O) dt) 1,
0

2 1vl- HIgl0) - cg l0) ),

In the Euclidean chart space the point § {being an extender re-
lative to the plane H) is a Lipschitz point relative to H.
Therefore we have a positive number $ such that lé'qlo)-f:'qv(OH,s Blvl,

Therefore if we choose TE(O,-%B—J we have
180 T, (01 2 (vl FIcglo)- & 0000, 2 Ivly- TBIvey 2 31v],

for all v with ivl st, . Now since ¢qff) is no critical point

of the exponential map expg: 1S —M » the map expg,: V——(expS(V)):V
is a bilipschitz homeomorphism on a neighbourhood ¥ of Eqﬁ) .
Clearly, because vli*mo o) = €l | there exists a positive number
tyst, such that we have E’qv(?) eV for all v with vl ty

Using the bilipschitz homeomorphy of the map expg: V—v

we know there is a number R such that combining the facts above
leads to = dicglf), ¢ (1)) = = dlexpg (TP, expg (€, (1N = 1T(R-E, (T > L ivl,.

Thus d(cq(?),:qv(?)) z Rivly for all v with {vij s t;. This proves our claim in step 2.
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Proof of the claim in step 3:

tet Fe (0,f) , and let Ivlst, then we get

~

t
feq (F)-cq, 11 s Ihyl + lehv(Hl dt

Q
(5.4) s thyl + Uyl «14s, 103 petf
(5.5) < Ihle FUibge (2i00e 180 T102 )
(5.6) < Ivite (3 Fe2nFe® 2y (Fe 20 1m0

where (5.4) holds because of (4.263 and (5.5) is got using (5.2).
We denote the right hand side of inequality (5.6) by (A). Now
defining a function (FF) —= FEF):= T etf %‘

and using that t <1 we get
(R) < tht (143 FLF)) « T (a0, ()1 .
Hence

(5.7)  legi® -cq 1 _ lg-gul
leglh) —cqu (11 Iegt) = cqulth]

1«3 f1t,10 + 1L

Using (5.3) and (5.1) we get
(5.8)  IeqFl-cq, (Bl = Ralvl, with Iviet,

Exploiting (5.8) and (5.1) wuwe get from (5.7)

11, ¢q, 1 19-qy | . e
(5.9) el 2wl b s pE e 2R
dicg, cq, (8} i Ra a
Now we have |g-g| = Jexps(8) - exps(G+v)l = o{|vl,) because

Dexpg (§)(v)=C, o( )} the Landau O-symbol. Therefore exists a

function &(v), with li% § (v)=0 and
v



ol b 3FET < s for all Te (0T1.
Ivl, Ra?

Using this and defining f(f)::-%-F(E,E)
inequality (5.9) yields  dlelBodf)) 500y, ¢,

d (eqlf), cq i)

This proves the claim in step 3.

Proof of the claim in step 43

By our assumptions the exponential map exXpg has no singularity
in an open neighbourhood g of 5q[§,s,] . Therefare

expg, § —= exps(5)=0 is a local diffeomorphism on 0.

Because of thatwehave a number ¥>0 such that for all t'E[?:‘,s,]

eXpg, * gr(fv — exps(gx(f)):=8x(£7 is a diffeomorphism,

§x(t'):= ix‘e Uunls / Ix—'Eq(t')LéK‘jCﬁ.

Dencte for all v uithlvhs-%x-minimal joins from c$g¥) to S

by trg,(t), g,(0):= cqv(?), g{t):= cq(¥+t). In general
gv(D,d(S,gv(U))l need not to be contained in 0. Houever cq(f)
being an extender is not a pica relative to S, Because of that we
have lim (g,10,d(g,(0),5)) = cql¥,s] . Therefore thereexists anumber
2(%) such that g 10,d(g, (0).5)] i*lé[EBYét’;) for all v with |v{; < n(t)
Using this we 1lift the geodesic pieéé)ng,ﬂgJOLsnvia the map expg
to the normal bundle. We start to lift at the point g,{dlg,(0),S))

and find that the lifted geodesic piece called g,[0,d(g,l01,S]} ends

up in E(F) and for that g0, dlg, 10,51 = ¢ (¥ dlg, (00,5} +F].

The last equality holds because there is only one segment in
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0c UnlS having the property to start in E%(E) and being

normal on HalS nD . Using &, {%,d(g,(D),5)+t]= §;[D,d(c“(¥),5ﬂ
ve get c%[z,d(gv(D),5)+%]= gv[D,d(%v(E),S)], Therefore

Cqy [%,d(cw(%),5)+;] is a minimal join from c%(z) to S . More-
over this minimal join is uniquely determined by its initial
point g,(0D)= c%(%) if Ivl,sz(z) . This proves the claim in

step 4.

Remark: All consideratiomnsused in the preceding proof and all
arguments they are based on { i.e. crucially

lemma 4,1) are essentially local ones. In particular we do not

make any assumption for S outside of a neighbourhood of the point
p). Therefore it is not difficult to see that glG,s] fails to be

a locally minimal join to S5 for any number s> s,. Namely given the
conditions of theorem 5.2 and assuming that for some €>0 the path
gl0,s#€l is a locally minimal join from S to g(s,+E) we can refor-
mulate the result of step 4 replacing minimal by locally minimal
and extender by local extender, Using this reformulated result and
the result of step 3 with properly choosen f,Te(0,€), ¥< T, then
for small enough &(v)+ f() the construction in lemma 4.1, applied
with central point c‘(z) and radius g€:= t-T yields a path b with
length smaller than s, - 2t+T . This path b joining S with the
point g{s,-2%+t) is contained in an arbitrary small neighbourhood
of gl0,s,+E1.

Thegrem 5.3: Let S be a C2*-smooth, k-dimensional, closed
submanifold of a complete, unbordered n-dimensional C™-smocth
Riemannian manifold M, kef0,...,{(n=-1)}. Let (LS,m,S) be the
normal bundle of S in M, W: LS —= S being the projection of

any vector xelS on the footpoint m(x)eS. Denote by LS,
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the subbundle of 1S consisting of all vectors in 15 which

have length one i.e. lS,:{xelS /1=|x|mu)},|l the norm related

{x)
to the metric in the tangent space Ty,M of M at the point n(x).

a) Then the map  s:1S, — (0,20] ,s(x):= sup{t/d(S,exps(tx))=t}

is continuous.

b) ‘Let 5:15, 2{x/s(x) < = } + M, x + expg(s(x)x). Thentheset s (]S;) con-
sisting of all non-extenders relative to S is closed. Therefore
§(LS,) is the cut locus Cg of S in M,

Proof of theorem 5.3J) The statement 5(151)C(0,~ﬂ holds mainly

due to two facts. First for any zero vector OpelS exists a
neighbourhood U in LS such that expg, t i — exps(U) is a diffeo-
morphism. Second:#) "Minimal joins from any point peM to S are
normal on S". A proof for the second statement makes use of the
following fact. Namely for any p€M there exists a positive number r
such that the function d{p,.) is C'-smooth on §{xeM/D<d(x,p)<r]}.
Further using % and the definition of the map s it is easy to

see that §(1S4) is the set of all non-extenders relative to S.

We now prove theorem 5.3b Ue show: #*%) "The set of of all non-
extenders relative to S is closed,"

For this, let (g,)eM be a seguence of non-extenders relative to S
and assume (q”) converges against a point g e M. We must prove
that g, is a non-extender relative to S. Now by theorem 3.1 the
picas are dense in the set of all non-extenders and we may
therefore assume that the q, are picas. Using this we

prove now that 4 is a non-extender. If 4 is a

1) The ideas in the proof of theorem 5.3 are essentially classic-
al ones. However, we give the proof here for the sake of
completeness.
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pica we are done. SO we assume that ge is not a pica.

Consequently let cq, [ 0,d(g.,5)] be the unique minimal join from
d . s .

q, to S, q,=cq°(D), It %o (t):cqo(t). Now, if g, is an extender

then by thearem 5.2 the map expg must be e diffeomorphism on an

open neighbourhood U of the point (-d(S,q,)(.:% (d{S,g,)))elS.

Let (cn), c(Eﬁ) be sequences of minimal joins from

U to S, ch # En' Then 1lim cn(O) = qu = 1im cn(O),

and therefore

f-d(S.a,) E,(d(S.a,)), d(5.a) Eq(d(s,a0)) e D

for sufficiently large n. This contradicts

expg (-d(5.a,) §,(4(5,0,))) = 4 = expg(-d(S,0,) E(A(S29))

This proves theorem 5.3b.

We now prove theorem 5.3a, For this we shall prove the following
implication: "If a sequence (x,)elS converges against x,elS,
then s(x,) converges against s{x,)e€[C,%] ."

First we treat the case s(x,)< o0 ., We argue by contradiction.
Namely let € be any positive number and assume there exists a
(here equally denoted) subsequence of (s(xn)) with s(xn) é
(s(xo)-€ ,8{x,)+€) , for all nelN. Then at least one of the

following tuwo statements must hold.

I) There exists a (here egually denoted) subseguence of (s(x,))
with D <s(x,) <s(x,)=g for all ne IN.
I1) There exists a (here equally denoted) subseguence of (s{xg))

with s(xq) > s{xg)+€ for all ne IN,

Let us consider first case I). Here s{x,) must have a cluster point
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ge[U,s(xo,-E]. Thus there existis a subsequence (s(?n)) of

(s( xn)) with 1im s(xp) =ty Therefore and since lim X =, the sequence of non-extenders
(exps(s(in)Qn)) converges against expg(r, x,). By %) above
Pxps(rqxo) is a non-extender. However thisis a contradiction
because r,<5(x°). Let us treat now case II. Clearly here the
geodesic pieces gn:=iexps(txn)/0 £t £s(x°)+5} are minimal

joins from expg((s(x,)+€)x,) to S. By assertion 2.7a & sub-
sequence én:{exps(ti)/D et ¢s(x,)+€] of the seguence g, con-
verges against a minimal join ‘

9, ='{exps(txo) / 0 <t < s(xo) + €}. However this yields

a contradiction because exps(s(xo)xo) is a non-extender.

We now discuss the case where s(xo) = o , We wish

to prove that for every positive real number R, exists a
natural number n, such that s(x,)®R, for all nzn,. The proof
will be indirect., Assume there exists a number K, and a sub-
sequence (s(X,)) of the sequence (s(x,}) such that s(X,) <K,
for all nelN, Then we have a subseqguence s(fn) of the sequence
s(?n)suchthafs(i;)convm@esagainst a certain number he[O,KJ .
Therefore and since lim i,: %, we get expg(hx,)= lim(exps(s(ggi)).
Therefore expg{hx,) being limit of non-extenders must be a non~
extender, Hence ue have a contradiction because h <s(x°). This

completes the proof of theorem 5,3.

The following theorem 5.4 is well known see {1§ page 239 and U©5]
page 98 . A proof of theorem 5.4 can be given using con-
siderations,technics and arguments similar to those in the

proof of theorem 5.3. Therefore we shall omit a proof of
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Theorem S.4: Let M be a complete, unbordered, C¥-smooth
Riemannian manifold. Let T;M be the unitsphere buncle of M i.e.
Ty M={xeTh/1= |xl 4+ Then the function s: Ty M —(0,00]

s{x):= sup {t/d(m(x), expg(tx))= t}is continous.

The following theorem 5.5 is well known,too, see [16] p. 241 and 43 p. 131
We shall omit @ proof which can be given using theorem 5.4 and

considerations similar to these in the proof of theorem 5.3.

Theorem 5.5: Let M be a complete, unbordered, C¥-smooth Riemannian
manifold. Then the function y:M—=(0,00], w(p):= d(p,C,),is
continous.

Let M be a complete, bordered C*”-smooth Riemannian manifold with
C®-.smooth boundary. Then it is not clear whether thearem 5.5

will hold in this case. However the subseguent theprpm 5.6 due

to Berg, Bishop 13  and Scolozzi 162 implies immediately that

in this case at least di{p,( 1>0 for all peM,

Theorem 5.6: (Local uniqueness) If M is a C”-smooth Riemannian
manifold with C®-smooth boundary, then each point has a neigh-
bourhood in which every pair of peints can be joined by a unigue

shortest path,

Remark: We introduce the function Sl Yim —[0,00] ,
SA(q):= sup{eeR/g is e-extender relative to A},

A any given closed set in 2 complete n-dimensional manifold.
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The function 5,( ) reflects e.g. certain regularity properties
of the set A and of 3M. In order to illustrate this we mention
now a few facts without giving detailed proofs because we do

not need those facts in the sequel. Using theorem 5.3 and arqu-
ments similar to those in the proof of theorem 5.3 it is not
difficult to show in case M= @ that the function SA( } is
continuous ifA is a C*-smooth submanifold of M or if A is an
n-dimensional bordered submanifold with C*-smooth boundary, If

A is only a C"' -smooth manifold then 5,( ) need not to be con=-
tinuous even if 8M= P. This can e.g. be seen from the properties
of Kaufmann's example [371 which are described on page

However if A is a closed C% -submanifold of M, ®M= B, then there
exists an open neighbourhood U(A) of A& with S,(U{A)) < (D,e].
This can e.g. be seen using corollary 5.9. It can also be proved
more directly by showing that there exists a neighbourhood U(A)
of A which does not contain picas relative to A, thus C,nU(A)=0.
Namely minimal joins of points in U(A)\A with A are given by
geodesic segments which are normal on A, There exist no picas

in U(A) because it can be shoun that those normal geodesic seg-
ments starting in A do not intersect in a small neighbourhood

of A. This holds due to the Lipschitz continuity of their initial
vectors belonging to the normal bundle of A and can be seen
using similar estimations as in the proof of step 1 in theorem
5.2. It is not very hard to see that for a general C'-smooth
manifold AeM there need not to exist an open neighbaurhood U(A)
of A with 5,(U(A)) = (0,%]). In general we have always an open
neighbourhood U(A) with S,(U(A)) =(0,¢] iff A& is an EFP-set, see

definition 5.1 and theorem 5.7. Let us consider now the case =P
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and A being a point pe M\3M . At leest if we make nc regularity
assumptions for @M the function SA( ) need in general not to
be continuous even not in 2 point g,e FM\OM . Namely the example
given in figure 3.2 on p. 44 describes a situation uhere we have
a sequence of points (qn) converging against g,e M\3M with
5,(90)= Splao)=00 but Sp(gn)= O for all ne N, The example in
figure 3.2 also shows that the function p —u qﬂp%: d{p,Ce)
need not to be continuous in a point q € MaM. Namely reflect the cone 34
at the plane which is orthogonal to the central acis of this cone at

it's vertex v. Denote this reflexion of aM by €0. CO is boundafy of a con-
vex body D. Let g be any point in CON{v}. Then we have Cv =, thus

Y(v) = =, However, it is obvious from figure 3.2 that we can choose a se-
quence of points ap € MDD with 1im 4 = g, such that the sequence

(d(qn, an)) is bounded from below and above by fixed positive real numbers.

Therefore y( ) cannot be continous in q.

In [29] Federer investigates in Euclidean space a class of sets

which enjoy the so called unigque footpoint property. Any set

A closed has the unique footpoint property if there s
a neighbourhood U(A) of A such that for every point oeU(A)there

exists a unique point E(g) of A closest to g. Federer calls

sets with this property sets of positive reach. Prior te [29

a similar concept had been studied by Durand [27]. Bangert,
Kleinjohann and Walter investigate sets of positive reach in
Riemannian manifolds, see [1], [39 , [38], [713.

following Bangert ang Kleinjohann we call sets with local unigue
footpoint property shortly "EFP-sets" . All convex sets and all
sets with C*-smooth boundary belong to this class, see [11. 1In

Riemannian geometry EFP-sets are important for the investigation
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of conuex sets see B9] and UZ] . Using the concept of cut locus
we give here now a simple characterisation of EfP-sets. For

this we will first give some definitions.

Definition 5.1: Let M be an unbordered complete C¥-smooth

Riemannian manifold and let A be a closed subset of M. A is
called EFP-set if there exists an open neighbourhood O(A) of A
such that for every ge O(A) there exist a unique point  §(g) in A
with d(a, ¥(q))= d(g,A). The mapping §: 0(A) —= A is called

metric projection onto A.

Theorem 5.7: (Characterisation of EFP-sets.,) Let M be a com-
plete, unbordered C¥-smooth Riemannian manifold and let A be

any closed subset of M. Then A is an EFP-set iff there exists
an open neighbourhood U of A such that U daoes not meet the

cut locus Cy of A.

Proof of theorem 5,7: Let U be an open neighbourhood of A

with UnC,y= g. We shouw for all gel exists a unigue point g(q)
in A with d(q,g(q))= d(g,A). By assertion 2.2 there exists at least
one peh uith d(a,p)= d{(g,A)}. Now assume there is another FeA,
T4 p such that d{(g,B)= d(a,A). Then ge U is obviously a pica
relative to A. Thus ge UnC, . This is a contradiction against
the condition UnC,= g . Therefore ng(q).

It remains to prove the converse direction in theorem 5.7, For
this let & be an EFP-set in M. Then we have an open neighbour-
hooe U of A, such that the metric projection E: U —= A is
well defined, We now show there is a neighbourhood U of A with

L, N U= B. By Whiteheads theorem there exists for any a¢ A an open
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ball B(a,r,):={xeM[d(x,a)< r,} such that any tuo points

X,y € B(a,ru) have a unigque minimal join and this join is con-
tained in B(a,r.). We define U:= GI\(id‘B(a,%ra)) and we
claim €4 nU = P.Now U is an open neighbourhood of A. Assume
CanU# B. Then we have a non-extender g el. Therefore there exists
a pica g in U. Now since G el we have a point aef with

Qe Ur\B(a,%rl) . Therefore exists a unique (*) E(g) e A uith
d(qg,A)= d(ﬁ,g(q))s-%xh_. Thus we have {a,g(q)}=8(a,r¢) Due
to the definition of B(a,r,) there exists only one minimal join €3
from § to E(g). Therefore (*) implies that ¢; is the only
minimal join from § to A. This a contradiction against the
statement that § is a pica relative to A. Thus ung, = g,

This complete the proof of theorem 5.7.

Remark: If U is a neighbourhood of A such that Un Ca= P then

by the above proof the metric projection £: U — A is

well defined. However if U is an open neighbourhood of A such
that the metric projection is well defined then Un Cp= B does
not necessarily hold. Take e.g. as manifold M the cylinder

15'x RIcR® and as set AcM a straight line parallel to the axis
of M. Then M is an open neighbourhood of A such that the metric
projection E: M ——— A is well defined. However we have here

Cyn M P,
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In [1}] v.Bangert proves a result which can be formulated as
follous.

Theorem 5.8 Bangert: Let N,M be twuo Riemannian manifolds and

let fiM-—=N be a CW ~diffeomorphism, If AcM is an EFP-set

then also f(A) is an EFP-set in N,

Theorem 5,8 in combination with theorem 5.7 yield immediately
Corollary 5.9: Let M,N be two Riemannian manifold and let
fiM—=N be a C" -diffeomorphism, Let A be a closed subset

of M such that there is an open set 02 A with Cpn 0= B. Then

we have an open set 0=f(A) such that ar\CFM)= 2.

The last corollary meéns, if a set avoids locally it’s cut
locus then this property is invariant under Ct1—diffeom0rphism

and is independent of the Riemannian structure.

Corollary 5,10 Let A be an EFP-set in an unbordered Riemannian

manifold. Then there exists an open set U containing A such that
the metric projection E: UNA ~—= A is locally Lipschitz

continuous.

Proof: Choose an open set U such that U contains A and Cyn U= B,
Then every point in U\A 1is an extender and therefore a
Lipschitz point relative to A. Corollary 5.70 follows by
applying theorem 4.5b if we define the function g +—=—u{g) in

theorem 4.5b by u(q)::d(A,q).

Corollary 5.10 is a weak version of a result due to Kleinjohann.
Kleinjohann proves in [38] that every point p e A has a neighbour-

hood U(p) such that the metric projection E:u{p) —= A is
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Lipschitz continuous, if A is an EFP-set. The Luclidean case
of Kleinjohann's theorem has been proved by Federer in [29) . For
the special class of locally convex EFP-sets, Kleinjohann's

theorem was proved in Riemannian manifold by R.Walter in [71].

The subseguent theorem mainly describes for a certain class
of manifolds some simple relations between the number of iso-
lated points in the cut locus and topological properties of

the related manifold.

Theorem 5.11¢ Let M be an unbordered n-dimensional complete
Riemannian manifold. Let A be a closed bordered n-dimensional
C?-smooth submanifold of M. We define Ny:={qe M\A [a(a, )
not differentiable in q} and we denote by J“A the set of iso-
lated points in N,. Let |[J, | be the number of points in J
A NA NA
and let k € NuU {=} be the number of connected components

of 9A . Then the following statements are valid:

a) We have k > ]JNAl.

b) Let us assume now that k is  finite. If IJNﬂa k
then M\A is diffeomorphic to the union of k disjoint
open unit discs and OA is diffeomorphic to the union of
k disjoint unit spheres., Further the cut locus C,= jW
and C, consists of k isolated points.

c) If Np= B, then(MANIA is diffeomorphic to the exterior
normal bundle over A.

d) If A is a single point p and if |3%|>1 then M is homeo-

morphic to the unit sphere SN,
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Proof of Theorem 5.11: -Note we shall not always derive a

claimed statement in all details, when we think that the claim
is an easy conseguence of the preceding considerations. 0n the
other hand we can also not avoid being redundant when we des-
cribe sometimes overlapping statements in different ways. -

If g is an isolated point in the set Ny this means that g is
also an isolated point in the cut locus C, because Ny is a

dense subset of C4 by theorem 3.1.

Proof of theorem 5.,11a: During the subsequent considerations

it will be necessary to prove more than is claimed in theorem
5.11a. However these considerations are also very important for
the proof of other parts of theorem 5.11.

We know from above that any point ge JNA is an isolated point
in the cut locus Cp. We want to show now that for any given iso-
lated point q in C, exists a connected component Rq of 8A with
the following properties: All geodesics which are normal on Rq
meet in g. All these geodesics yield minimal joins to A until
they meet in a. For all points xe A\Rq is d(x,q)>d(Rq,q). e
claim further that Rq is diffeomorphic to the (n-1)~dimensional
unitsphere S™' ., Precisely we will prove:

(%) "The distance ball BN(Q):={xeNId(x,q)srq:= d(A,q)} is
diffeamorphic to the closed n-dimensional unit disc and aB,q(q)=Rq "

The proof of the preceding statements needs some preparations.
For this note A is an n-dimensional bordered submanifold in M.
Therefore there exists for any boint be OA exactly one vector

Xpe Ty My [Xy} = 1, such that g(t):= epr(txb) yields for small
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enough positive numbers t 2 minimal join to A i.e. d(A,g(t))= t,

| | being the norm in T, M. The vector X, is called exterior nor-
mal vector relative to A at the point b, We know by theorem 5.3
that the map s:3fA — [0, %], s(b):= sup{teR/d(exp, (tX,),A)= t}
is continuous. For any bedA with si(b)<eo define 3(b):= ‘
epr(s(b)xb). Now let c be anarbitrary point in A such that
S(c)= q is the above isclated point in Cp. Further let ﬁc be the
connected component of O8A which contains c., We will show now

that s(R. )= d(A,q) ang 3(R.)= q,thus RecSrela) :={yem/d(y,q)= rq}

-1 . .
We use theorem 5.3. The set Rq :=s (JO,»[)N Rc is open

in R_. Since q is both open and closed in C,, 5_1({q}) n R,

is open and closed in ﬁq, and henceé a full connected compo-
nent of ﬁq' On this connected component s = d(A,q). There-

fore this component is also closed in ﬁc and hence equals RC.

In order to finish the proof 4t 1is sufficient +to

show the statement (%). For this 1let ¢ < d(A,q) be so

small that Bg(g) is diffeomorphic to the n-dimensional unit
disc. Thus Sa(q):={y/d(q,y)=8} is diffeomorphic to the (n-1)-

s™1. Now define 8:R.—— M by

dimensional unit sphere
8(p):= expp((rq-€)Xp), p any point in R, . Using partly similar

arguments as above it is easy to prove that Q(ﬁc) is open and
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closed in Sg(q). Thus S(R.)= S¢(g). It is nou obvious that

w>

: Rg—== S.(q) is a diffeomorphism, namely recall (rq-€)<s(R)
and remember theorem 5.2. Therefore ﬁc is diffeomorphic to the
(n-1)-dimensional unit sphere, Clearly EBW(q)= Re. Using the
diffeomorphism é-tse(q)————-ﬁc it is not difficult to see

that d(a,Cq)>rq, thus equ:Bw(D)———-BW(q) is a diffeomorphism.
Here BW(O):={XeTqM ”X}érﬁ} | { being the norm in TqM, We have
shown that BW(Q) is diffeomorphic to the n-dimensional unit disc.
It is obvious that éw(q):=iyeN/d(q,y)<rq}=(N\A) and that

S(p') #q for all p' € 3A~R_.

We have proved theorem 5.1%2 because we have shouwn that for any
point ge JNA there exists a boundary component which is mapped by §
on the point g and we have shoun that to different isolated
points in C, belong different boundary components of 8A. There-
fore we can use the isolated points to describe and distinguish
the related boundary components. This means for any point oeJNA
exists exactly one boundary component Rq with ¥(Rq)= g and if
a,Ge Jy, with g # § then Rq # Rg. Therefore the number of
boundary components of 3A gives an upper bound for the number

of points in 3NA , This is the claim of theorem 5,%117a.

Proof of theorem 5.11b: Using theorem 5.11a the statement

IJNJ’ k implies that IJNAJ = k . This means that every
boundary component corresponds to a different isolated point

in Cp . Now let x be any point in M\A . There exists at least
one minimal join ¢, from x to A which meets 3A say in a peint X.

By the assumption: there exists an isolated point g
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in Cp such that X is contained in the connected boundary
component Rq. Now by the considerations in the proof of theo-
rem 5,17a it is clear that cy is part of a minimal geodesic
between A and g. This geodesic starts in xe Rq and meets the
cut loeus (, in q. Therefore x is contained in ém(q):ziyemld(y,q)<rﬁ,
M\A :>é@(Q) being diffeomorphic to an n-dimensional open unit
disc. It is obvious from the considerations in the preceding
part of the proof that the discs BW(Q)’ qe.JNA are all disjoint
i.e. éw(q)r\ﬁq(ﬁ)= g if g AT, q,0¢ JM . Therefore we have
shown that M\A is diffeomorphic to the union of |3NA[disjoint
open unit discs i.e., to é%ugw(q).
Further clearly Cy= J, consists of IJNJ = k isolated
points. Therefore say using (¥) above dA= LJRq= LJSW(q) is

qGCA 1‘374‘
diffeomorphic to k disjoint unit spheres.

Proof of theorem 5.11c: Using theorem 3.1 the condition Np= 2

implies that the cut locus Ca= £. The claim of theorem 5.11cis

now obvious.

Froof of theorem 5.11d: Take a small positive number 8 such

that Bg(p) is diffeomorphic to the closed n-dimensional unit disc. The
disc Ai= Bg(p) 1is a closed bordered n-dimensional submanifold
of M. It is easy to see that the cut locus [y agrees with cut
locus Cp. Namely a pica relative to A is obviously also a pica

relative to p and vice versa. Therefare Cp and Cp agree on a
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dense subset and thus Cp= C, . By the assumption of theorem 5.11d
there exists an isolated point q in Cp because Np is dense
in Cp by theorem 3.1. The point g must also be an isolated
point of Cp. Now since Ny, is a dense subset of Cax»s the point
g must be an isolated point in Na. Thus we have

|ld>1 = k= 1. Therefore using theorem 5.11b we get

that Cy consists of one isolated point g. The considerations
in the proof of theorem 5.11b yjeld further that M is union of
two cells namely the discs Bs(p), Bw(q), rq= d(A,qg). These
discs are matched together along their common boundaries i.e.
3Bg{p) = Ss(p) = SW(Q) = ZBW(Q)' It is now easy to construct

a homeomorphism between M and the n-dimensional unit sphere,
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§ 6 CUT LOCI ON BORDERED SURFACES

As an illustration of the results and methods of §§ 2, 3,

4 we study the cut locus of special bordered surfaces.

Note some of our results will be formulated and
proved first for bordered subsurfaces of the
Euclidean plane Ez, because here a technical descrip-
tion of the proof is more comfortable than in

the most general case. However, for global results
our proofs will only use arguments which transfer
Titerally to the general case where £? is re-
placed by any unbordered, complete, two dimensional
Riemannian manifold M with cut locus Cp =@ for all p € M.
If we make essentially local considerations, then E2 can

be replaced by any two dimensional Riemannian

manifold. Therefore if this is possible the more general
results will be merely stated as an obvious conseguence
after the proof. of the special case for subsurfaces of E2.

Note in order to avoid clumsy descriptions, we will often

not distinguish between a parameterized path and its re-

lated point set, when we believe that the situation is
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clear from the context and a2 precise description can

be supplied easily. Like in the preceding sections d( , )
will allways denote the intrinsic distance function de-
fined in §2.

The following proposition describes bordered surfaces

providing examples for our further considerations.

Proposition 6.7: Let S be a closed, connected, topolo-

gical subsurface of the Euclidean plane (EZ,1.1), | | the
Euclidean norm, We assume that dS contains only locally
rectifiable paths; i.e. for any point pe 35 we have a
Fuclidean ball B,(p)::{erzllx-plsr} such that By (p)n 35
is subset of one simple, rectifiable path c contained in
8S, c homeomorphic to [0,1]. Then (S,d) is a space with
an interior metric. This metric space is locally compact
and complete. further (S,d) is homeomorphic to the metric
subspace (S5,] I) of (EZ,II), (8,1 1) carrying the metric

induced by the Euclidean norm.

Proof of proposition 6.7: We show first that any two

points in S can be joined by a rectifiable path contained
in 5. It is obviously sufficient to prove that any point
in 5\ 35 can be joined with any point in 35 by a rec-
tifiable path contained in S. Let g be any point in the
connected open region S5N\35 ., The set of points in $\3S
which can be joined to q by a finite polygon contained

in 5%8 is open and closed in S\35 and thus equals S5\@S,

Now let p be any point in 35, Take a ball B, {p) such
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that B.(p)n @5 is part of one rectifjable path c =35, c
homeomorphic to [0,1]. Pick a point § in B8.(p)n (51\239).
Starting in g ue move now along the Euclidean segment
connecting § and p until we meet 35 the first time. Then
we move along ¢ until we reach p. Denote the just des-
cribed path from g to p by b. Joining g and § by a finite

polygon b contained in S5\85, the union bub yields a rec-

tifiable path in S from q top.

Hence any two points in S can be joined by a rectifiable
path contained in S, Defining for any two points p,g in 5
the intrincic distance d(p,qg):= inf{length tjt a rectifiable
path in S from p to q} it is not hard to see that (S,d)
is a metric space with an interior metric; see also
remark 2.1,

If we can show the following implication: (#) "For any
sequence (x,) in S5 the condition lim|x,=x,l = 0 implies
lim d{xp,xe)= 0, X, € S". Then we have: (xx) "(S,d) is
homeomorphic to (5,1 {)".

For due to d(xn,xg)2|xa-%| we get from lim d(x,,xe)= 0
also lim |xp=-%d= 0. Thus using (*) we get (%), Clearly
(¥*) implies the completeness of (S5,d). A Cauchy
sequence (x,) in (S,d) being alsc a Cauchy sequence in
the complete space (5,1 1) is converging in (5,] ).
Therefore by (%%) the seguence (x,) is converging in

(S, d). This proves the completeness of (S,d). It is
obvious that (#%) implies that (S,d) is locally compact.
In order to finish the proof of proposition 6.7 it re-

mains to show (). For this let (x,) be any sequence
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in S with lim{x,-x,} = 0. We consider only the non-
trivial case where x, is a point in 3S. from some
number n, on the seguence (x,) is contained in a cer-
tain ball Bg{xgy)}, s>C such that Bg(x,)n 35 is part of
one simple, normalized, rectifiable path E:[G,E]——* E2,
Zfo,t]es, with E(te)= x4 for some t,e}C,tl. for any
given x,6Bs(x,) we move now beginning in x, along

the Euclidean segment joining x5, with x, until we meet
95 the first time at some point denoted by €{tp).
Clearly we have d(Xe,Xxn)& Jto=tn|+ |E(tn)=xplelt, -ty
+|xp=%g |. We are finished if we can show lim |t ~t,)= O.
Assume the contrary. Then we get a subsequence (i) of
(to) with 1im ty = t, # t,, T,e[0,t]. Therefore
lim|8(t)-8(%,) = 0 and &(%,)# E(t,)= x, because
E[D,E] is simple. This yields a contradiction for

limlZ(tp)-%x,1= 0.

Remark 6.1: It is not difficult to give examples showing
that in case 35 is not locally rectifiable (S,d) need

not be locally compact. -It is also easy to give examples
showing that under the assumptions of proposition 6.1
the metric d(.,.) and the metric induced by the Euclidean
norm |.1 need not be locally equivalent. Namely define

a subsurface 5 of the Euclidean plane €2 as union of

the following sets A::i(u,v)e[zl us< 0},

5=={(U,V>€Ez [u >0, VG(R1\]U,UZ[H , {u,v) Euclidean coor=-

dinates. Choosing in S:=A U B sequences of points
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1 - 11 = A
Dn==cﬁlo)’ p“:=(F,;1) we get d(py, »By) > 27 . 2n
- 1
[Pn =Bnl >

while we have lim py,= lim po,= O.

The subseguent proposition 6.1 is a trivial generalisation
of the preceding proposition 6.7. The existence of distance

realizing paths follows by lemma 2.1.

Proposition 6.,1: Let S be a closed, connected topological

subsurface of an unbordered, complete, two dimensional
C®-smooth Riemannian manifold M. We assume that 35 con-
tains only locally rectifiable paths. Then (S,d) is a
complete space with an interior metric and (s,d) is
homecmorphic to the topological subsurface S of M,
Therefore (S,d) being locally compact and complete
enjoys the Heine-Borel property (c f.[77} p.2) and any
two points p,qeS can be joined by a path in S which has

length d{p,q).

Proposition 6,1 is basic for all our further results, It
will sometimes be used without any reference. The sub-
sequent lemmata describing properties of the distance
function and of cut loci in a special class of surfaces
are important for the proof of our main result in this

paragraph i.e. theorem 6.2.
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Lemma 6.1t Let S be a closed, simply connected topo-
legical subsurface of the Euclidean plane E2, Assume
that 35 contains only locally rectifiable curves. Then
Cp n (S~8S) = P for every point p € S, Cp the cut locus
in S of the point p. Further the distance function
d{p,.) is c'-smooth on S\(35ufp}) and has a locally

Lipschitz continuous gradient there.

Proof of lemma 6.1: By proposition 6.1 (S,d) is a

locally compact space with an interior metric and any
two points in § can be joined by a minimal path con-
tained in S. Let p be any point in S, We apply theorem

3.1 and theorem 5.1 for the proof of this lemma. For
this we show (C, n (5~35) =P. Using corollary 3.1 it is

sufficient to prove that there is no point ge(5\35)

having (at least) two minimal joins to p with distinct

initial vectors in g. Assume the contrary. Then we have

in S tuo normalized minimal paths 84358, from g to p

and g,n\{a} , g, \ {a} meet the first time after their

start at some point p= 91(t°)= gz(to), te>0. Moving

from g to p along g, and moving then back to g aleng

g, we get a simple closed curve «ceS, "The path
is boundary of & simply connected bounded region R

which is contained in S D,

1) See remark 6.2,
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Now let g(t) be a normalized ray issueing from g= a(0),
with initial direction §(0), g(0) pointing into R
and §(0)# 4{0), &(0)+ §(0).

"After it's start in q the ray g{t) will stay in

ReS until g\fq} meets « the first time at some point

2
qm.“)The point G is contained in 91 U 95,- Let us assume q € ¢q.
Moving from q along the ray g to U and then from UG along 91
to p we get a path g from g to p. It is obvious that g is
shorter than 9;» 2 contradiction because g ¢ S. Using the

same arguments the assumption €9, yields a contradiction

U
as well,

Remark 6.2: The preceding proof makes implicitely use
of the Jordan curve theorem, see (24 p.256. We shouw

now that the ray g(t) pointing into the bounded compo-
nent R of E%« will stay in § until g \ g} meets «
the first time. For this, we shall prove the following
statement: "Let S be a simply connected subset of g2

and let P:[0,1} —=9, B(0)= B(1) =: q be a simple
closed curve in S. By the Jordan curve theorem we have

a bounded component R of EZ\B . We claim that R is con-

tained in 5." Assume this claim is not true., Then

there exists a point g in R which is not in S Define
a constant loop y by K:[D,1]—*—§, y(t)= d. We identify

£2 with the set of complex numbers C. Using the common

notation of complex analysis we obviously get for the

2) See remark 6.2.
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¥ page 223, 256

We shall need the following well known fact: (+) For
any loop & in C\[§} the index j(&,3) equals j(q,a)
for all loops n homotopic to & in T\§F}." This state-
ment (+) makes sense even for merely continuous loops
which are not necessarily rectifiable, see [26] p.251.
Now by the Jardan curve theorem c.f. [26] p.256, we
get for an arbitrary point § in the bounded component

\Y

R of € {8} the index j(8,Y)e§1,-13. Thus j(8,q)efr,-13,
On the other hand due to the simply connectedness of S
the loop B8 is homotopic to ¥ in §. Therefore and be-

cause G ¢S we have B homotopic to by in €v{8}. Hence

by (+) we get j(8,3)= j(&,ﬁ)= 0, a contradiction!
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Definition and remark 6.3: Let M be an unbordered,

complete two dimensional, C“-smooth Riemannian manifold.
We assume further that M is simply connected and has
no conjugate points. A Riemannian manifold having all

those properties is called a space of type ().

The following fact is well known: "If an unbordered
complete Riemannian manifold M without conjugate
points is simply connected then the cut locus Cp is
empty for all pe M." Suffice it to say that the
absence of conjugate points implies that the exponential
expps TpM —= M is a covering map for all pe M. Thus
expp is a homeomorphism if M is simply connected. On
the other hand if there are no cut points on an un-
bordered complete Riemannian manifold M then M being
diffeomorphic to R" is simply connected and there are

no conjugate points on M,

The following lemma 6.1 is obviously a trivial gene-

ralisation of the preceding lemma 6.1,

Lemma 6.1 Let S be a closed, simply connected sub=-
surface in a space of type (*). Assume that 3S contains
only locally rectifiable curves. Then Cp N (S~85) = p,
for any p €5, Cp the cut locus of p in S, Further the
the distance function d(p,.) is C'-smooth on S\(3suip})

and has a locally Lipschitz continuous gradient there.



Corollary and remark 6.4: The preceding lemma 6.1 showed

that in a certain class of simply connected bordered
surfaces the cut locus of a point does not meet the
interior of the bordered surface. Thus we get by defi-
nitien 3.4 and theorem 3.1 that the cut locus of any

point p in those bordered surfaces is empty; precisely

1

Co

= C‘; = C?: £, see § 3 . This means the cut

locus Cp in the sense of the definitions 3.41, 3.4I1, 3.4.1V
is empty; We have not yet proved that Cg =P i.e. we

have not yet shown that the cut locus Cp is empty when

Ce is described by definition 3.4.1I1I. We shall show this

now. Moreover we will prove a stronger result uwhich is

of interest per se, i.e. the subseguent theorem 6,7,

Note our proof of theorem 6.1 is constructed such that

it can be transfered to more general situations.

c.f.t remark 6.5. Otherwise it would be possible

to give a much simpler proof of theorem G.f.

Theorem 6.1% Let S be a simply connected subset of Ez,
then any two given points in S can be joined by at most

one shortest normalized path contained in 5,

Proof of theorem 6.71: The proof will be indirect.

tet g4( ), g,( ):[0,L] —= S be tuo distinct normalized,
shortest paths in S joining the point p= g1(D)= gZ(O)
with the point g= g,(L)= g,(L). Now since those paths

do not coincide completely there exists te€]0, L[ with

19, (to)-g,(ta)1 >0, |.1 the Euclidean naorm. Taking the

connected component of {t/]g1(t)—gz(t)[> 0, te 3} uhich
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contains te we get a subintervall Szz)to—a,t°+6[,

£,8>0 of J. We have obviously g (t,-8)=g,(t.-&) ,
g1(t°+5)=gz(to+3) and g,(i)n gl(5)= g.1t is no re-
striction to assume in the proof from now on that 3
equals J. Moving along g4 from p to g and then along

g, back to p we get a simple closed rectifiable curve o.
By remark 6.2 the bounded component R of N is con~
tained in S. We know by the Schinflies theorem [53]

page 72, that Si=(Rua) is a topological submanifold

of E2 with boundary « and that 3 is homeomorphic to

the closed unit disc. Therefore 5 is a closed, simply
connected topological subsurface of £2 with rectifiable
boundary curve « . Pick any point reR. By propositioné,.l
we can join p with r in § by & minimal path g(t),
g(0)= p. By lemma 6.1 we have CpnR= P, Cp the cut locus
of p in §. Therefore by theorem 3.1 the minimal path
g(t) (ending up as geodesic segment at r=g(t1) ) can

be extended as minimal path beyond r until it meets the
boundary curve o at some point say g,(s)= g(s). Moving
from r along g back to p, we will obviously stay on a
geodesic segment as long as we stay in R until we meet o
at a point say g{t,), t,< t,. We claim that g{ty)=0,(t,)
with 0<t,, First since g( ), g ( )y g,( V:fo,t] — %
are normalized minimal paths g{t,) must be contained in
fo,(t,), g,(ty)T with 0st, <ty. If we would have
g(ty)efgq (t) [ ost < t,} then the (geodesic) segment

g {ts,s] would give in § a shorter join from g,(t,) to
9,(s) than the subpath g4 [ty,s] contradicting the mini-

mal property of g4 s note that 91[t2,s] tannot coincide
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with glt,,s] because g{t,,s] contains the interior

point re S. We assert now that g(s)=g,{s)# g and

thus s< L, because otherwise we would immediately get

a contradiction to the minimal property of g; by an
argument similar to that one in the preceding sentence.
Next we describe a simple closed curve 8 in 3. we get

B by moving from gz(tz) along g up to g(s) then following
gy up to g finally moving along g, back to Qz(tz)'

By remark 6.2 the bounded component R, of N is con-
tained in §. Thus again as above §1:= RyuB is a simply
connected, closed topological subsurface of E2 with rec-
tifiable boundary curve B and 51 is contained in g. We now
claim : (%) "There exists &>0 such that fg(t)/s<t<s+e}
is contained in S, where here as above g(t) denotes for

all t>t, the unigue geodesic extension of g beyond r."
For the proof of (%) we take a small ball
85(9(5)):={er2/lx-g(s)k%} such that 8n Bg(g(s)) is con-
tained in the set g[tl,s]u g,[5,8] , § some number in ]s,L[.
Thus there is in Bg{(g(s)) no boundary of §1 which belongs
to g,. Assume our claim (%) is not true. Then it is
possible to find a number s,, s< s,< s +-%-such that g (s,)
is not contained in §1. Pick now a closed half disc H

with center g(s—-é) anc radius y such that H is contained
in Bg(g(s)) and in §1. Next we consider the (geodesic)

8 s

Y +s,-s) which start in g(s-?) and meet

the interior of H. We can obviously choose among those

segments of length {

segments a sequence u, of segments with endpoints of the
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u, converging against 9(51). Clearly all u, are con-
tained in Bg{g(s)) because

sup{lx-g(s)l xeun, ne W} £ (length un)+[g(s)-g(s-%ﬂs ﬁ%5<5 .
Now if all u, would stay in 3, then g(s,) would be-
long to §4, because g(s,) is then a limit of points
Ffom the closed set §1. Theref ore there exists an half open
segment Up_ := un\ig(s-%ﬁl which leaves 51. Thus

Gko meets the boundary B the first time at a point
b which cleary has to be in gf]s,§]), say b=gfsz).
Moving from p along g up to g(s-%) moving then along
Up, Up to b we get in g s path from p to 91(52). The
length of this path is obviously shorter than s,,
remember g is a ﬁinimal Jjoin between p and g(s)=g,(s).
Thus we have got a contradiction to the minimal pro-

perty of g,. This proves (¥). Defining ¢

&=
maxia,(g[s,s+e]ﬁ:§} we get by (%) that E,>0. Now

g(s+ey,) is obviously a point in the éoundary 8 of §,.
Thus g(s+e,) is a point in g,Js,L[ v g,]t,,L] because
g(s+gm)¢ glt,,s] and since gl(t,)=g,(t,). If g{s+e,)

is in gz]tz,L] then we get a contradiction to the
minimal property of g,. Therefore g(s+en) is in

g 1s,L[ and this implies obviously that g, [s,8+e,,]
coincides with the segment g[s,s+£mL Nouw we define a
simple closed curve B, in §1. We describe B, as follous,
We move from g(t,) along g to g(s+g,) then along g, to

g,{L), recall L > (s+e,). Finally we move from g, (L)
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along g, back to g{t,). Let R, be the bounded com-

2

ponent of E“N\ B,. As shown above we get a simply con-

nected, closed subsurface $,:=(8, u RZ)C-g Due to the

-
definition of e, we know that for all n> 0 the segment
g[s,s+em+q]contains points outside of S,. This yields

a contradiction to the minimal property of g, by the

same argument we used above to prove (%).

The preceding proof used only that S is a simply con-
nected subset of a two dimensional complete unbordered

Riemannian manifold M, where M has not cut points.

Therefore we get the following generalisation of theorem 6.1'.

Theorem 6.1: Let S be a simply connected subset in a
space M of type (¥), c.f.: definition 6.3. Then any
"two points of S can be joined by at most one shortest

normalized path contained in S,

Remark 6.5: For the case that M eguals £2 one could
have given much shorter proofs for theorem 6.1, using
the fact that in £2 all distance balls are strongly
geodesically convex. Those proofs do not work in spaces
of type (%), Namely there exist complete twodimensional
Riemannian manifolds without cut points, which have an
area of positive curvature and posses focal points,see [34] p.192.
In those manifolds geodesic balls are not necessarily
convex. -We wish to point out that our proofs of lemma

6.1 and theorem 6.1 seem to work also when the space of
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type (%) there is replaced by a two dimensional metrically
complete Finsler manifold M, M without cut points and

am = p.

The preceding ~ lemma 6.1 and theorem 6.1

showed that in a certain class of simply connected bor~-
dered surfaces the cut locus of a point does not meet
the interior of the bordered surface, moreover this cut
locus is empty, We shall treat now the converse problem,
We will prove in lemma 6.2, that for a complete bordered
surface which is not simply connected the cut locus of
any point will always meet the interior of the surface.
For this we need first the following technical propo-

sition.

Proposition 6.2: Let M be a two-dimensional, unbordered

camplete, C®-smooth Riemannian manifold. Let M be 2

closed, connected, topological subsurface of M. We assume
that 9M contains only locally rectifiable paths. Let

Py »P, be two distinct points in M and c:[0,21] —M ,a
normalized, minimal join from p, to p,. Then we can

find a sequence of points g,e M ~5M with lim g,= q:= c(1)

and lnzzd(pn| »Gp) = d(pz,qn), and with the'foﬂowing property: if we de~-
finenormalizedpaths cp:={0,21,] —= M such that c,[0,1,] is 7
a minimal join from p, to g, and cn[ln,Zln] a minimal

join from g, to p, then the paths cq {0,214] are simple.
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Proof of proposition 6.,2: In case qe(M\3M) the pro-

pesition 6.2 is trivial, because we can choose in this
case qp= g and the claim of the propesition is

obviously true, Therefore let us assume that gedM. The
proposition 6.1 showed (+): "The topology induced by

the intrinsic distance d( , ) on M agrees with

the submanifold topology. Therefore there exists

an open neighbourhood U of q

such that Bé(q):={xemld(x,q)é-%13U and U is homeomorphic
to the open half disc ﬁ4(0):=i(v,u)eR2 [ v+ Wtet, w203,
(v,w) being Fuclidean coordinates in R2, Identifying
points of U with the corresponding points in ﬁ4(0) we

have 3Mr\U=i(v,u)e §1(0) /w=03. We define two real

numbers f:= min{s >O/|c(l-s)l=%1, hi= minfs >0 / lc(l+s)|=—‘2—3,
Nouw c:[l-F,l+h]-—-H1(o) being part of a minimal join

is a simple path. We get a simple closed path g(t),

g: [1-F,14h+1] —= M by moving for te[1-f,1+h) from
c(1-f) to c(1+h) along c¢[1-f,1+h]=: F and moving for
tell+h,1+h+1]  on the subarc £ of §(v,w)eR®[v?+ u2='%,u303
which joins c(1+h) with c{1-f).

Nouw g[i-f,1+h+1]=:g being a Jordan curve is boundary

of a simply connected subset G<H,(0)< B%(q) and G is
homeomorphic to the closed twodimensional unit disc D,

In the preceding statement we made use of the Schinflies-
theorem and the Jordan curve theorem., It is clear that

by it's description G is defined uniquely, see remark 6,2.

Defining &8:= d(E,q) it is obvious that 8>0. Using that
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G is homeomorphic to the closed unit disc D we identify
points in G uwith the corresponding points in D. There-
fore £ and F are two non trivial subarcs of the unit
circle. Now since g=c(l) is an interior point of F it

: A8 1)
is not difficult to see that for any ne N with <

exist two positive numbers oc“,Gn<§6 and a path

byt [0,1] — G with bp(B)=c(l-a,), bnr(1)=c(1+8a) such
that b,]0,1[ & G\g and b,[0,1]c B%(q). Note by (+) we
have {n such that Hxn(D):=£(v,w)eH4(D)[vz+uzex'n:§CB%(q).
Using the homeomorphy of D with G we can arrange that
bal0,1] is contained in Gn Hy, (0). Here the path b,[0,1]
can be got from a sequence of secants T, in D, the end
points of which converge against ge Tp. We define a func-
tion (s):=d(py,bu(s)) - d(p,sba{s)), OD<s 1. Using
that c[0,21] is a minimal join we have nPn(O)=-2an< o,
‘Pn(1>=23n>0- Therefore exists s e(0,1) with 'fn(sn)=0'
Thus we have gpi= bp(s,) e ((6vg) A By(q)) with

n

dlogra,)=d(p,rq,) =t lg.

1) UWe assume further condition (K): " The number _:T is
so small that for all points peixeﬁ/&(q,x)é%}: B,

CpnB=P, d(.,.) being the distance in the Riemannian
manifold M, and Tp being the cut locus of the point p
in the Riemannian manifold M.
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Using proposition 6.1 and lemmz 2,1 we know that any
two points in M can be joined by a distance realizing
path in M. Therefore we can define a (normalized) path
cn: [0,214]— M such that cn[0,1n] is a minimal join
from p, te g, and cn[ln,Zln] is a minimal join from

g, to p,. In order to complete the proof of proposition
6.2 it remains to show that cq:[0,21,]— M is a simple
path. Clearly c,[0,15] and cq(1n,214] being minimal
joins are both simple. Therefore if cn:[D,Zln]—d-N is
not simple, there must exist positive numbers WUns
Upe]0,1n[ such that cp(lp-wn)=cp(ly+0n) thus
d(cn(ln),cn(hrun))=d(cn(ln),c"(ln+an)). This yields

Wn= Upbecause cf0,1), clln2la] are both normatized, minimal joins.
We define Upi= max{u> 0/ cn(ln-u)=cn(ln+u)}1) The

union cn[U,ln-Uhlu cn[ln+Un,2ln] being a join from p,
to p, is a path of length (Zln—ZUh)‘g)d(m,pz):Zl. On
the other hand since ﬁJD,ln] is a normalized minimal
join from p, to g, we get 1, <d(p,y,q)+d(g,an) ¢ 1+d(q,q,)
¢1+=. Thus we have 21y ¢ 21+2{}). Therefore using
inequality (a) we get 21+20, €21, ¢ 21+2() thus Gy« 4,
This yields defining Ggi=c,(l,-u,) that

8(8q>a) £ d(Tp,05)+3(ansa) € d{Gpscn(1n))+d(an,q)s 2.
Clearly G, is a bifurcation point of minimal joins,
Minimal joins being geodesic segments in G\N3G do not
have bifurcation points in G\8G . Therefore ue can
assume G, 4 G OG . Defining up:= miniu/q{ln+u)5863.

N
we get O2 w2y

né'% and &n=cn(ln'dn)=cn(ln+dn)€ EvF =3G.

1) Note that cp{lp-w) = tn(lp+w) for all w€[0,un[ because we have
here uniqueness for minimal joins. This uniqueness holds by

theorem 6.1 due to condition (K) because we shall see below
that 0 < w

< —=..
n—n
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This yields dyef because d(dn,q)<% < § =d(E,q). There-
fore g.ec[0,21]. Nou we have d(p1,q\n)=d(q‘n,oz)=ln—u\n
by the definition of c, and u\n. However g is the only
point in c([0,21] with d(p,,q)=d(g,p,). Thus we get
g=0p=cn(la-uy) and d(p,»a,)=ad{d,,p,)=1= 1,=u, . There-
fore we have two minimal joins a,,a, built by the
following unions of segments a1:= c[l-%,l] vg,

ayi= guc[l,1+£] , Tr=cq[ln,1n+dn]. It is obvious by
the definitiaon of u\h that § is a minimal geodesic
joining q with q:ci,,. Extending the geodesic segment §
by length % beyond g we get due to condition (K) on p
a minimal geodesic segment § which starts in Qne Now
since c[O,Zl] is simple it is clear that not all points
of c[l- %, 1luc] ;{;L+1ﬁ] are contained in g because
Enc[l-%,l[ =¢, gnclil +%]=ﬂ, for a, and a, being
minimal joins are simple. Let ge c[l-y,1[uc] 1,1+4] e
such a point which is not contained in §. There exists
a minimal geodesic segment g, in M which joins gge GNOG
vith g and we have (94\iqn})n (@\iqn})zﬂ. Namely, since
(length 91)5 d(q‘,q)+d(q,qn)s % < length § the
assumption (g,\fan})n (G \{g,})# # would imply 9,c g
and thus qeg, a contradiction. Now gystarting in a,

meets 3G=LuF the first time in a point

Ge c[l-%,l)\-' c(l,l+%] because d{g,q)

"
3w

for
d(E;Q)ﬁd(ﬁ,qn)+d(qn,Q)ﬁ(lEﬂch 91)+ %5 'ZF'*'%
Let g, be the partial segment of g, which starts in g,

and ends in g where say g=c(1-8), Oces%. Clearly
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Q‘CN is a non trivieal, minimal geodesic segment fraom

4, to § . The union c[1-B8,1]u g being contained in

a, is also a minimal join from q, to g. Therefore ue

get (c[1-8,11v )= g, for due to condition {(K), g,

does not meet the cut locus of g, in M. Consequently
ged, . This yields a contradiction because (Gifgnl) n{g,\{g.})
=f and §,©g4+ The case uhere Eec]l,l+%] can be treated

in the same way. This proves proposition 6.2.

Remark 6,6: The second part of the preceding proof
(showing that cn[D,an] is simple) broves that under
certain conditions minimal paths in & bordered manifold do not
bifurcate. Using considerations similar to those in

the preceding proof it is now easy to show the follou-

ing statement: "lLet P, sP2sPy De three distinct points

in a bordered surface as assumed in proposition 6.2,

Now if there exists geM such that d(py,q)+d(a,p3)=d(p,,p,)

and d(p,,q)+d(a,ps)=d(p,,p;) then d(p,,a)+d(qg,p,) >d(p,,p,)."

Lemma 6.2: Let M be an unbordered, complete two dimen-
sional, C®-smooth Riemannian manifold. Let M be a
closed, connected topoclogical subsurface of M. We
assume that 3 contains only locally rectifiable paths.
If M is not simply connected then we have Cp n (M\AM)£ ¢
for all points peM, Cp being the cut locus in M re-

lative to the point p.
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Proof of lemma 6,2: We know by proposition 6,71 that

M is a complete, locally simply connected space with
an interier metric d( , ), see also § 2

Therefore and because M is not simply connected we
know by the assertion in {7 page 11, that for any

base point peM there exists a shortest non contractible

(normalized) loop c(t) in M with c(0)=c(21)=p. Let

(ﬁ,g) be the universal covering space of M, The space
(ﬁ,é) is a complete space with an interior metric d(.,.).
The covering mapping M:(M,3) —= (M,d) is a local iso-
metry . Let 51 be any point in the fiber w'(p). Nou

we 1ift the path c(t) to M. We start the lift in B

and denote the lifted path by &(t), thus ¥(0)= §,.

The lifted path ends up in a point €(21)=:f,e " (p).
Clearly 51# Ez for c(t) is not contractible. The
{normalized) path €(t), D0st<21 is a minimal join

from B, to B, because (Yec)(t) is a shortest non con-
tractible loop with base point p. Conseguently length (&)=
21=4(%, ,B,). Ue define §:= E(1) and have d(8, ) =d(5,B,)=1.
Now if Je M 2M then it is easy to see that

%(G)=: ge Cpn(M\3M). . Namely in this case c[0,1] and
c(1,21] vyield two minimal joins from g to p with
distinct initial vectors at gq. This can be seen as
follows. Assume d(c(1),p)=: 1<1. Then we have a normal-
ized path ©:[0,I] =M from g=c(1)=c(0) to the point
p=t(1). We define a new path 8:[0,1+1]—= M by &(t):=c(t)
if Oetel, and B(t):= c(t-1)
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if 1€t<1+1, Now lift the path £ to M. WUe start the
1ift in B, and denote the lifted path by S(t). Clearly

g2(1)=9 and F(1+1)e W_4(p). Thus we have two possibili-

ar

ties, First 3(l+1)= P, s however this yields a contra-

diction because then E[l,l+1] being a join from g to

~

A
(1+1)e W~ * (p)\{F,3 then (Yo 8)(t), Oet € 1+1 yields

p has length 1<1= d(ﬁ'”a). If in the second case

g

a non contractible loop with base point p and length
smaller than 21, a contradiction. Therefore we can.assume
that 3e3§. By proposition 6.2 we have in an arbitrary
small neighbourhood of § a sequence of points 'E;"‘e N
with lim 8a= § and 3(61,ﬁn)=3(6n,51)= ly. Further we
have (normalized) simple paths%,:[0,21] — @ with
€a(0)= B,y Eal214)= B, and E,(1y)= Gp. If now d(p,M(q,))=1y
for some ne N, then it is obvious that gu:=T(g,) is a
point in Cpn (M\3M). Therefore let us consider the
possibility that d(p,qn)i= 1,4 1, for all ne . Then

we have for every ne N a (normalized) minimal join c,(t),

ch(ly)= p. We define now in

o

stel, with §,(0)= ap ,
M a (normalized) paths So(t), D€t s 1,41, by

Ea(t)s= Ealt) if Dt €1y and &, (t):=,(t-1a) if
Dét£1n+in, gn(t) being the lifted path of En(t) where
the 1ift starts in §,. Clearly 5,,:=e,,(1,,+1,,) is a point

in W '(p). Now we have ﬁn;é ps because otheruise 6,,[1,,,];-1'"]
would give a join from §, to B, of length 1, < 1,.,=E(E4,En),
a contradiction. Further p,# p, because In ¢ ln=8(ﬁn,52).

Conseguently ﬁne W'ﬂ(p)\f_m,ﬁl} . It is obvious that
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there exists a number r >0 such that

(§8, Ine NIN{B,,B,3) < Be(T), with

B,(§):=fxefl [d(&,x) =1}, Now Be(@)n (W (p)NEB,,5,8)

is compact. Moreover it is a finite set. Recall (M,E)
has the Heine-Borel property and ﬂ:(ﬁ,a)-—- (m,d) is

a local isometry . Thus uwe have an equally denoted con-
stant subsequence of (P,) with B,:= B,e Wﬁ?\iﬁ1’513

for all ne N, Now 1,>1,>d(§,,p,)=0(5,,Ps). Therefore
and because lim 1lp= E(ﬁ,,ﬁ): 1 we have lim E(En,53)=
G(1im Gp,P5)=0(8,54) = 1. Hence (B, ,85) < 3(F, ,8)+
E(E,Es)s 21. Now the length of a shortest non contrac-
tible loop with basepoint p is 21, Thus 5154,63) 221
because W(51)=‘ﬁ(33) =p and B, % B; . Consequently
d(B,,0)+3(q,55)=d(F,,Bs)= 21.

Using the same arguments we also get
3(5,,3)+3(3,55)=8(8,,5,)= 21.

On the other hand we also have

d(g,8)+4(3,5,)=8(5,,5,)= 21.

However this is not possible by remark 6.6, This proves

lemma 6.2.

Remark 6.7: It is easily seen that the considerations in
the preceding proof (with trivial modifications) show more
than ve claimed. Under the assumptions

of lemma 6.1 the following holds: "Let p be any point in M.
Then we have a point geM and sequence qgue Cpr\(M\aM) with

lim Qn= Q-"
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Combining lemma 6.1 and lemma 6.2 with theorem 6.1 we

get nov immediately the main result of this paragraph:

Theorem 6.2: Let M be a closed topoclogical subsurface
of a two dimensional simply connected, complete Riemannian

manifold ﬁ} M without conjugate points and assume that

M contains only locally rectifiable curves and aﬁ:ﬂ

Then the following statementsare eguivalent:

a)

b)

c)

d)

e)

f)

The subsurface M is simply connected.

There exists a point p in Muith CP\3M= g, Cp the

cut locus in S of the point p.

Cp = § for all points p € M.

There exists a point p in M such that the distance

function d(p,.) is Cl-smooth on 3\(3M uipl)

For all points p € M d(p..) iécl-gmmth on S\ (aMuipl )

and has a locally Lipschitz continuous gradient there.

Any two points of M can be joined by exactly one

shortest normalized path contained in M.

Any two points of M ~ 3M can be joined by exactly

one shortest normalized path contained in M.
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Remark 6.8: In the rest of this paragraph we shall employ

the Jordan curve theorem and the Schidnflies theorem so many
times that we will not always refer to those results. Hou-

ever sometimes we will use the natation (3) as a reference

to those theorems.

)

has locally rectifiable boundary curves then we call this

If a closed bordered subsurface of a space of type (») 1

subsurface a__space of type {¥%x). We proceed now with an

investigation of the cut locus of two points in a simply
connected space of type (*%). For this purpose we intro-
duce also the notation of an "equidistantial"™ set of tuwo

points.

Definition 6.4: Let p,q be any two points in a metric space

(m,d). The set A(p,q):=ixeM/d(p,x) = d(x,q)] is called

eguidistantial set of the points p and g.

The following definition will be helpful to simplify our

descriptions.

Definition 6.5: A generalized pica relative to some closed

set K is a point y with the following property. There exist
at least two normalized minimal joins g,[0,d(y,K)} g, [C,d(y,K)]
going from y to K and there is a number £>0 such that

g, [0,e]ng, [,e] = §y} .

The subsequent lemma 6.3 is basic for our further conside-

rations.

1) See definition and remark 6.3!



Lemma 6.3: Let p,q be any two distinct points in a simply
connected space (M,d) of type (%x), M being subsurface of

2 space (M,d) of type (). Let (yq)eM be any convergent
sequence of generalized picas relative to{p,q}, say

lim y,= y,« Then y,ef(p,q) is a generalized pica relative
to {p,o}. Further, if ap{t), gq(t) are arbitrary (normalized)
minimal joins from y, to p and from Yo t0 g respectively

then g, n gy =fyej .

Proof of lemms 6.3: Every point y, is a generalized pica

relative to §p,q}. Therefore there exist two normalized minimal
joins g4, 5 9z, from y, to ip,q} and we have a number €,>0
such that g, [0,8.]n 9, [o,8,] i Y.} « Clearly

9, (dlyns{psa})) e {p,a}. Say g, (d(ya,fp,a})) = p. Then

we have an( d(yns§{psa})) = g , because otherwise the uni-
gueness of minimal joins in (M,d) is violated; recall
theorem 6.1 is valid for a simply connected space of type
(%%}, Further also due to the "unigueness of minimal joins"
we have g, [0,d(y,, fp,a})] N gy, [0,d(y,,8p,a3)] = §ya3
because of (6.1). Therefore y.€Alp,q) and we have for every
point y, normalized minimal joins Ypn > Ggn from y, to p,q
respectively with (gpnngqn ) ={ya}. Clearly y, € A(p,q)
because A{p,q) is closed. Thus we have two normalized
minimal joins gPD[D,d(yU,pﬂ, qu[a’d(yo:Q)] from y, to p,qg
respectively with d(yo,q)=d(y,,q)zd(yo,{p,q})= 1. The
proof of the lemma is finished if we can show that

g”r1gv ={ym]. Assume the contrary. Then the number

to 1= max{t /gy, (t)=0g (t)} is positive. Clearly we have
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gPO[D,tO]: gqo[O,tJ because of theorem 6.1.

Therefore on(to)= qu(to) =: X, being a bifurcatien pecint
of minimal joins is & point in M. Let (yﬁ) be a sub-
sequence of (y,) such that ggy converges against a minimal
join E&o from y, to p. Then §P° = 9po by theorem 6.1,

Let (yps) be a subsequence of (yg) such that (gqm) con-
verges against a minimal join from y, to g. Then as above
(99#) must converge against ggo. Clearly the sequence
(gpﬂ) being a subsequence of (gpﬁ) must still converge
against Opo - In order to simplify the notation we will denote
(gpﬁ)’ (gqf) by (gpn), (gqn) respectively. The rest of

the proof is performed now in several steps. The hardest

We shall prove T later. Using T we finish now the proof
of lemma 6.3. We know by {T) that there exists a number
n such that say (g@l\ gpo) # B. Thus let x;= gPo(E) =

gqﬁ(tﬁ). Now in case t<t, we have d(xz,p) = d(x7,9).

Therefore if 1z
then d(yasxi)*+ d(xm,p) = dlyf,x5) + d(xz,q) =
{(length Gga [0,ta) + (length gqﬁ[tﬁ,lﬁ]) = d{yg,q)

This yields d(yg,x5)+d(x5,p)=d(yz,q)=d(ys,p) . Thus
d(yrsxg)+d(xz,0)= (length g [0, ta])+(length gy [E,1]) =
d(yf,p). Therefore aj:= 9 [0,t5]u I [t,1) is a

minimal join from yf to p. Ye have gﬁi[o’tﬁ]r\gpﬁ[o’l ] =
{yﬁa. Hence ag, 9pp 3TE tuo {as point sets) distinct

minimal joins from y; to p, a contradiction. It remains

to discuss the possibility (6.2') t > t,. Clearly

d(a,x;) < d(p,x;) because
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d(q,xﬁ) + d(xﬁ,ya) = 1ength(gqa) = d({p,q},yﬁ) 5»d(p,xﬁ)+d(xﬁ,yﬁy
Now the case d(q,xa) = d(p,xa) has already been settled
above. Therefore let us assume (6.2) d(q,xﬁ) < d(p,xﬁ)‘
Condition (6.2') implies Xx:- ¢ 9po ]to,l]. Thus

(6.3) d(xo,xﬁ) + d(xﬁ,p) = d(xo,p) = 1-t, = d(xo,q).
Hence using (6.2) and (6.3) we get

d(q,xﬁ)+d(xﬁ,x°)< d(p,x;)+d(xa,x°) = d(qgyxgq).

Thus we have d{qg,xg)+d(xp,x,) < d{g,x,) , @ contradiction.
Clearly using the same arguments as above one can shouw that
the assumption Sps ™ 9o £ 8 also yields a contradiction.
Therefore lemma 4,3 is proved if we can show T. We will

do this now.

Proof of T: The proof of T uses considerations in a
neighbourhood of the point x,= Cp, (ts). Therefore we

start now with a description of this neighbourhood and

we introduce notations, Choose >0 so small that (6.4)
Be(xo)i=§xeM[d(x,x,)6€} is contained in a geodesically con-
vex ball in M and (6.5) Bg(xe)n §yesp,q] = Bu

The point xehas a neighbourhood U(x,)< Bg(x,) such that

U (x,) is homeomorphic to the Euclideanzhalf disc

Hy :=£(U,V)€R2/\J 20, v+ V213  and U(xo)n 2N is
homeomorphic to f_(u,v)eH1 /v=03, {u,v) being Euclidean
coordinates in R%*. We identify the points in U(xy,) with

the corresponding points in Hy. Let dy:= {(u,v)& rR? [ v=0,
-1¢u<0) and dy :={(u,v)eR®[v=0, DU 1} . Ue
introduce polar coordinates (r,?) with (D,l{)):D:x°

and dy= {(r,p)/¢=0, O0ere1} .

Thus 4= i(r,\f)/l?:nf, G¢r<1%t and
Hy={(r,p) [ O<r 1, 0¢9<T}. Due to (6.5) we can define

f1 := mindy>0/ Jog, (te-y) | = 13, ya:= miniX>U/]gPa (toty) =1}
X3:= mini r>Gf |gqo (t°+X)]=13, }-| the Euclidean norm.
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Let Y'°:= on(to'x1) ’ P\ = 9P° (to+ Xz): Q‘ e qu(tu+X3)-
We abbreviate bys= on[to‘X}»to] s byi= gpo[tc’to+8é]'

by t= gqo[t°’t°+85] and A= {xe H1/ r(x) = 13.

Proof of T4: The proof will be indirect. We assume that

1
Yo €

»

. Now b= b,u byu X describes obviously a simple
closed curve contained in H; . We know by remark 6.2

that b is boundary of a simply connected set Bc Hy s
B homeomorphic to the unit disc D:=§{xeR*/ |x|<1%.

We show now first:

(6.86) by N §xo,y0 3 < B\ 98

Proof of (6.6): We know that yo # p', and y) # o'.

Thus y) is an interior point of the arc % hence

Eu(ys)n @B = E (y,)n %. Clearly E.(y,) contains points

of the tuo components B ~ 9B, RZ ~ B of R2 ~ b be-
cause b is the frontier of both components. Thus

Eq(yo)n BN3B £ # . Hence let (6.8) zpe E.(ys)n (BN 9B) ,
Then [zol<1 because of (6.7) and as BcH, . Now every

point ye (E (y)) n (H\E) can be joined with z, by an
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Euclidean segment syc £ (yy) with syn'f\' =P .
Therefore by (6.7), (6.8) and (3) all points yeE(yy)
with Jyl<1 belong to Ed(y;)n (B~\92B). Thus we get
(6.9) E.(y))n(B\2B) ={ye €clys) / 1y1<1} because
B\ 9B < Hy . Nouw the continuity of by, yields
bre 1= {byVfy i) E.(ya) # B ; hence say 2, €eby .
By the definition of ¥ we have for all points

ze b,\\iy;} that |z] <1 , Therefore using (6.9) we
get (6.10) z,e BN 98 . Ue need also (6.11)
(b\N9%xo,v23)n 2B = B, which holds as b,n 98 =
byn (Rub,uby) and bya K =y}, byn (buby) = x,.
Now all points of by\fx,,y5] can be joined with
z,e(B\ 3B) by a subpath of by\ § Xosve§ . Therefore
using (6.10), (6.11) and (J3) we get (6.6)

b\ §xe,y0} © BN OB .

Now Bc H, therefore B\ 98 =: oBci1 t= H,\ 9H
Thus (6.6) yields (6.12) by ixo,y;} © Hy\ BHy
Hence (6.13)  by\{xq,y,} < M\ 8M . Obviously (6,14)
d(?f,xo) := 108 >0, Now b‘1:= on[ta‘ﬁrto] is a geodesic
segment because we have gPo [to-G,t,] \ igPo(to)} c
b\ { Xesye} © MNBM due to (6.13) and (6.14). Let
5?“ [te-8,t,+8] be the (unique) geodesic extension of b:
by length 8 beyond x,. At least one of the paints

I, (to+B), 90 (t,+8) is different from §P° (te*8); say

9po (to*B) # 8y, (to+B). Denote with B, the (unique
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minimal) geodesic segment from gPo(t;G)to SW(%+B).Ckudy due to
(6.6) and (6.14) gpo(to~ﬁ) € B\ 9B . Therefore the
(normalized) segment 51 must meet 98 the first time at

some point X, where X may coincide with gPo(t°+G).

Using (6.14) we have d(K,E1)>48. Hence x € 38\ A c b,V by .
Thus let e.g. X be a point in by say X = gqo(to+d).

Denote with E; the geodesic subsegment of 51 which

joins the point gp, (te-8)= gqo(to—e) with X = gqo{t°+€).
Now the minimal geodesic segment E:C BecM is obviously
different from gqa[to—ﬁ,t°+ﬁq because qu(to)f S:. This

is a contradiction against the minimal (length) property

of 9o - The case that xeb, can be treated in the same

way. Thus we have proved T4.

We know by Ty that there are two possibilities:

(6.15) The point P is contained in the subarc A, of

A, E1 joining y, with q.

(6.16) The point g is contained in the subarc Kz of

R, Kz joining y; with ﬁ.

Let us treat now the case described by (6.15). We want
to prove that there exists a natural number © such that

n # #. For all natural numbers n > n.

90
Clearly ?(y;) # W(d). Let us assume

(6.17) Qlye) > ¢(a)

Then (6.15) implies (6.17) \P(y;)> \?(p‘)> L?(q‘).

Using the same arguments as above in the proof for

Ipn

(6.6) we find that b, \ ipﬂxos S HyN DHYy

Let R :=fxet,] r(x)=1, p(p)e LP(x)s%Tr] , with
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1=
Eyi= Eqlxg) = §xeR*[|x] €13 end dyr=fxe £, [ @(x)= 3T,
osr(x)s1} .
Now b := d‘qu bzui,1 is a closed curve which is contained

in £ := E4N fyet, [ rly)=1, 05‘?()’)4\?(0‘)} .

The curve b is simple because (B,\ ip‘,xog)n (8E1U d;) £ 0.
Hence b is boundary of a simply connected subset B, e E'.
Now since BZC £' the point ¢'is not contained in Ba2. Thus
we have d(By,d) >0 . Therefore there exists a number
e ]D,Xz[ such that (6.18) d(gqo (to+¥y),8,) > 0.

Clearly x':= gqo(t°+g3)e £'\A by the definition of ys -
Therefore and because of (6.18) there exists a number € > 0
such that

(6.19) Bg(x) :=fzeMf d(x,z)€&} c E,\ (B, uA) .

Nou since bis simple threr exists a number n >0 such

that EQ(y;)ﬂ E)B2 CE1 . By arguments similar to those
above for the proof (6.9) we get

Bp:= Ez(y;)n B,\ 88, = ierZ(y;)/ ‘x|<'l} .
Therefore it is obvious that for every point z eE.Z there
exists a number §&>0 1) , such that 88(2):=

iz'el"‘:/ d(z',z)éSSCBz.

Now because of the continuity of qu there exists a
number ?‘e]O,X"[ with ¥ := 990 (5—84)6 Eplyy). Thus

the definition of-g4 yields ;e%‘xe Ez(y;)[ |x|<‘13. Hence
;’eB,l and we have a number g>0 such that (6.20)

83(3‘() < B,.

1) 8 is cepending on the point z.
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The definition of },Xg yields qu(I)C EN (A U(d;\ iXOS))
it I := [tO'gH’to+25]' Therefore it is easy to see that
there exists a positive numbmrw<min{£,§} such that
(6.20)  Gy:= tLé% Bu(8ge () € E,N (AU £x,3)) -

We know from the beginning of the proof of lemma 6.3

that the seqguence Qqn(1> converges uniformly against
gqo(I). Therefore there exists a natural number n such that
wve have for all n:2h

(6.21) gqn(to— Xg)e Bg (%),

(6.22) ggn (Lot ) € Bg(X),

(6.23) gqn (I) € Gy,

The cambination of (6.20) and (6.21) yields Ign (to- 2}1) €8,.
Further combining (6.19) and (6.22) yields gqn(toa,g});, B, .
Therefore using (J) we get gqn(l)(\aBZ # P. This implies
together with (6.20) and (6.23) that ggn (1) by £ 8.

Thus g N P £ B for all n>hA.

The preceding considerations prowed T in the subcase
(6.17) of (6.15). However it is obvious that those
arguments can be used also to prove T in the subcase
\P(y;)é P(d)  of (6.15).

Further it is clear .that the procedure used to prove T

in case (6.15) can be applied to prove T in case (6.16).
In case (6.16) the above procedure yields the existence
of a number fe N such that for all ne N with n2® is
gpn n gqo # 0 . Thus T is shown. This completes the

proof of lemma 6.3,
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The subsequent proposition contains already a certain
amount of information about the structure of the cut locus
of two distinct points in a simply connected space of

type (##).

Proposition 6.3: Let p,g be any two distinct points in

a simply connected space (M,d) of type (##), M being sub-
surface of a space (f,d) of type (#). Then:

a) The set C
{p

,q} \NoM #¢, c{p,q} the cut locus of the

set {p,q}.

Let K be any connected component of C{p q}\BM then
1

the following statements are valid:

b) For'every x €K exists a number € > O such that

Px:= %hdnK=gJMnA@q) and %is&«ﬁﬁammmmto
o
10,70+ Bg(x) := {x'e M / d(x,x") < €}.
c) Let a(t) : 10,1[ » M be any c'-smooth embedding
with a(JOo,1[) = PX; (the existence of such an embedding

is assured by b). Then every point a(t) € P is initial
point of exactly two different normalized minimal
joins gpt(s) + g _,(s) going to the points p,q

. qt
respectively. The tangent vector o&(t) da(t)

(nonzero) angle built by the distinct initial vectors:

gpt, gqt of the paths gpt(s), gqt(s) respectively.
d) The set K is a submanifold of M and K is C1-diffeomorphic

to the intervall 10,1[.

e) Let ¥(t) : 10,1l + M be any C1-smooth embedding with

¥(10,7[) = K; (the existence of such an embedding is

It bisects the
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guaranteed by d) . Now let (t,) be any sequence in ]0,1I[
with 1im t, = 0or lim t, = 1. Then the sequence Y(t,)

has no cluster point in M\ 3M .

Proof of proposition 6.3: Statement a) is an immediate

consequence of proposition 6.2.

Proof of b): We know by a) that K # §. Let x be any point
in K. Then by the definition of the cut locus, the point x
is limit of a sequence of picas relative to the set {p,q}.
Therefore by Lemma 6.3 the point x must be also a pica
relative to {p,q}. Thus we have by Lemma 6.3 and theorem 6,1
exactly two normalized minimal joins gpx(s), gqx(s)
from x to the set {p,qg}. The paths gpx(s) ’ gqx(s) are
going from x to p,q respectively; this follows again by
theorem 6.1. Clearly x e A(p;q) and A(p,q) :={yeM / £(y) = 0}
with £ : M + R defined by f(y) := d(p,y) - d(q,y) for
all yeM. We know by theorem 6.2 that f is C1—smooth in a
neighbourhood U(x) © M\ 3M of the point x because

xe M\ (Mu{p,q}) . Obviously at the point x

grad f(x) = grad d(p,x) -grad d(q,x) = ~gpx + éqx #0
because x is a pica; épx' éqx the initial vectors of the

normalized paths gpx(s), g x(s) respectively. Using the

ot
implicit function theorem cf.[33 lp. 98 it is easily seen
that there exists a number € > O such that

P_:= A(p,q) n ge(x)' is C1-diffeomorphic to 10,1I[,

gs(x) := {x'e M/ d(x,x') < e} « M \ M . Thus say we have

a C1-smooth embedding a(t) : ]O,1[ - M\OM < M with
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a(Jo,70) = P and (grad £) (a(t))# O for all telo,il.
Therefore all points in «(]0,1[) are picas and we have cbvicusly

7

8 8 3
P = E(x) n a(lo, 1)y = Be(x) n kK = BE(X)n C{p,q}

recall A(p,q):(:{ ) This proves b).

p.q

o)
Proof of c): We know already P_ = Bg(x) n Picas{p,q}

%
with Picas {p,q}:= {yeM / y is pica relative to the set

{p,q}}. Again by theorem 6.1 every point a(t) e P, 1is initial
point of exactly two normalized minimal joins gpt(s), gqt(s)

to the set {p,g}, the paths gpt(s), g t(s) going from

d
af{t) to p,qg respectively. We have f(a(t)) = 0 for all

t €]0,1[. Therefore
<grad f(alt)), &(t)> = <grad d(p,a(t)) - grad d(g,a(t)), a(t)>=
<(§gt (0) - épt(o)), &(t)> = 0, < , > the scalar product

induced by the Riemannian metric on the tangent space

Tu(t) M.

Thus we have

(6.24)  <g , (0) , &(t)> = < G, (0), &(t)>

P

We know

(6.25) < gpt(o), gpt(0)> =1 = <gqt(0) ’ qqt(O) >
and

(6.26) a(t) # 0, g, (0) # g4 (0) .

pt

Now using (6.24), (6.25), (6.26) and the fact that the

tangent space T )ﬂ is two-dimensional it is easily seen

a(t
that that §(t) Dbisects the (nonzero) angle built by the
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(distinct) vectors gpt(o), gqt(O) at the point o(t).

This proves c).

Proof of d): We have already proved in c) that for every
point x e K there exists a neighbourhood B8 (x) such that

B (x) n K is diffeomorphic to JO,1[. Therefore and by

the definition of K, X is a connected one-dimensional
C1—smooth submanifold of M\ 9M < M. According to the
classification theorem of one-dimensional manifolds (see
e.g. [52] p. 55) K is either diffeomorphic to the unit
circle S1 or to the open unit intervall ]o,1[, because
every point x & K has a neighbourhood being diffeomorphic
to Jo,1[, cf. [52] p. 55. We want to prove that K cannot
be diffeomorphic to S1. Assume the'contrary. Then K being
C1-diffeomorphic to S1 is a simple closed curve contained
in M. Now M is subsurface of an unbordered complete Riemannian
manifold ﬁ, M diffeomorphic to R?. Let B, be the bounded
component of MK . By remark 6.2 we have

(6.27) Bk is contained in (M \ (6M u K).

Clearly by (J) we have K = aEk , Ek the closure of By

and B, is homeomorphic to the open unit disc,

k
8 2

2= {(u,v)eR2 / u2+v < 1}.

Further we have
(6.28) M\ (B UuK) # @.

Namely in case 9M = @ we get M = M. Thus here M \(Bku K)

. 1)
is homeomorphic to RZ\ D . Hence (6.28) is obviously true.

1D :={(u,v) € B2 / u? + v? < 1}
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In case oM # @ we have oM n B, = ¢ for KNIM =@ and

k
(6.27) . Thus (6.28) holds here too. In order to derive
a contradiction we discuss now all possibilities for
the location of the points p,qg. Clearly {p,qlnK = ¢
because p # g. First assume say {p,glc Bk‘ Now by

(6.28) exists a point ye M\ B Let

-
9y = gy([O,d({p,q},y)]) be any normalized minimal join

from v to {p,q}. By (J) we get

gy(]o,d({p,q} MNE)Ya K= gylo,d({p,q},y)[ n (Picas{p,q}) n M\3M)) + @ .

-

This yields easily a contradiction against the minimal length
property of gy. Using the same arguments we can exclude
that {p,gqle M\ §k . It remains to discuss the possibili-

ties
(6.29) ge M\ Bk and pe By

(6.29') p e M\§k and geB .
It is sufficient to treat case (6.29) because case (6.29')

can be reduced to (6.29) by simply changing the notations.

We consider now case (6.29). By theorem 6.2 the map grad d(qg,.)
defines a continuous vector field without any zero on

M\ (M u {g}). Thus by (6.27) we have that grad d(q,.) de~
fines a continuous vector field without any zero on

ﬁk c M\ (3Mvu{g} . Therefore it is wellknown that the

rotation index of the vector field grad d(g,.) on the

boundary curve aﬁk = K must be zero, see e.g. [46] p. 16, R

1) Recall that the following is valid: "Let B be any com-
pact bordered topological subsurface of R2. Agsume that



- 176 -

On the other hand it is well known, too:

(6.29) "If the rotation index of a vector field V (here
is V = grad d{(q,.)) on a closed, simple and smooth
curve K is different from 1 then exists at least
one point ve K where the field vector is parallel
with the tangent at K in y"; see e.g. [46] p. 25,

Satz 4.5.

However in our situation (6.29) is impossible because by
proposition 6.3 c) the tangent at K must bisect the
(nonzero) angle between the vectors grad d(p,.), grad d(g,.)
at all points y € K. This is a contradiction. Therefore

K cannot be diffeomorphic to Sl. Thus K must be diffeomor-

phic to the open unit intervall 10,1[. This proves 4).

Proof of e): The statement e) is essentially a conse-
quence of Lemma 6.3 and has been shown more or less al-
ready in the proof of b). Let (tn) be a sequence in

10,1 with say 1lim tn = 1 and say lim W(tn) = A € M\ oM

Then by definition xo is not contained in the connected

Cont. footnote 1) from p. 175:

we have a vector field V on B and there exist only
finitely many singular points {pT,...,pn} =: S i.e.
where V is not continuous or where V has a zero, or
where V is not defined. Now if Sn 3B = @, then the
algebraic number of singular points of V on B equals
the rotation index of the field V on §B." See e.g.
l46 1. 18.
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component K = Y ]O,11 of \ oM . However it

C b
{p,q;

has been shown in the proof of b) that X, € M \ oM

being limit of picas in K must belong to BE(xO)n K,

a contradiction. This proves e). Hence proposition 6.3

is completely shown.

Using Lemma 6.3 and the preceding proposition we give in
the following theorem a detailed description of the
cut locus of two distinct points in a simply connected

space of type (##).

Theorem 6.3: Let (M,d) be a simply connected space of
type (##) and let p,g be any two distinct points in M.
We define the point meM by the condition

d(p,m) = d(m,q) = % d{p,q): and we abbreviate

I, := [0,1] and I_1:= 1-1,0].

If m ¢ OM , then we have the following results:

1)

a1) Let K be the connected component of \ oM

C
{p,q}
with m € K. Then thereexistsa Cl-smooth embedding
‘P:(I_1 V) I1) + M , with ¥(0) = m and W(I_1L;I1) = K.
Further for every ¥(I ), k e {-1,1} exactly one

of the two subsequent alternative possibilities

(T} or () must hold:

1) C{p g} is the cut locus relative to the set {p,q}.
1

Later on in a.)we state that there_exists_only one com=
ponent of C,- , ~3M . We use this formulation of a,)
for technicalP’?’ reasons because we prove first 1
this weaker statement a1).
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(T) For every sequence t in T with lim t =k

the sequence d(m,W(tn)) is unbounded .

() There exists a point x, € 3M \ {m} such that
for every sequence (tn) in Ik with lim tn =k
the sequence W(tn) converges to xk.

= N\ = ¥(I Y(I

We have ‘i’(I_1 U I1) C{p,q} M, C{p,q} ( 1)U ( _1)

and ¥(I_,) n ¥{I,) = {m} with ¥(I,), ¥(I_;, the clo-

sure of W(Il)’ W(I_1) respectively.

m €3M then we have the following results:

There exists a continuous embedding @: I1 + M with

~

¥(0) = m and the restriction ¥ :]10,1[- M is a

c'-smooth embedding with (¥10,1[) = C{ \OM.

p.q}

For W(I1) exactly one of the above statements (T)

or () must hold. We have C{p,q}= w(I1).

Let me M or me M\N3M, Then the following results

hold:

c)

The cut locus C{p q}agrees with the set of all "gene-

ralized picas" relative to {p,gl, i.e. every generalized
1)

pica is a limit of picas.

1) This result is a converse of Lemma 6.3!
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d) There exists a number A > O such that
B, (m) n A(p,q) = B)\(m) n C{p'q] ,

with B, m) = {yeM / dlm,y) < Aj.

Proof of theorem 6.3: We prove first theorem 6.3 a1):

For this let m¢dM. Clearly me Clo,q} \3M . Let K .
>r 4

be the connected component of }\ M with m e K.

C
{p,q
We know DbV proposition 6.3 b,d) that we have a C‘l-
smooth embedding VY: I_1 U I1 + M with Y(0) = m ané

‘i’(]’._.l u I,) = K. Iet ke{-1,1}. We assume that there
exists a sequence (tn) in Ik with lim tn = k such that
a(¥(0), ¥(x)) is bounded. Then (¥(t)) has a cluster
point x, € M. By proposition 6.3 e) we have x; € oM.

Now by proposition 6.3 c) all points ‘y(tn) are picas

relative to ip,q;. Therefore Lemma 6.3 and theorem 6.1
imply that there exists a minimal join 94 from X to p

and a minimal join 9, from %y to g with

(6.30) gin g, = {xk}.

We assume that 91(t), gz(t) : [o,r] - M,

r = d(x,,p) = d&(x.,q) are normalized paths. Let

g(t) : [O,r1] + M be the normalized minimal join ZIrom
P to ¢, then ry = d{p,gq). We define

Gy 1= max {te[O,r1] / git) e g_]} ,

wy T min {t e[O,r1] / git) e 92} .

Now we prove

(6.31) w, <

For this note: If w
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g1[o,E] = g1[0,§-—w1]u §[O,w1] for in case

g1[f —wl,f] 7 a[O,w1] the uniqueness of minimal joins
il

1 2

the path g1[o,f SCTERY §[w1,r1] going from x, to g

is violated. This yields w, < . Namely otherwise

has a length shorter than the join 91[0,5 —wyd v glo,u,]

from x, to p, a contradiction because d(xk,p) = dlx,q) .
r r
We have to exclude that w1 = 7} . Now if w, = 7; then

a := 9, [o,r —w1] V] §[m1,r1] is a minimal join from

x, togq because 4 := g1[0,f - wT] u §[O,m1] is a minimal
join from ¥, to p and length & = length d. Therefore
theorem 6.1 implies 91[O,f -wl = gz[o,f-—m1] » {Xk,é(wj)}
= {xk, m} # {xkh because x, € 3M, m &€ 8M. This yields a
contradiction against (6.30). Using the same arguments we

X

can show that 7%-<w2. This proves (6.31).

Let b := g1[0,-f-w.l] v glu, w,lug, [0, +uw, -rl.
Clearly b is a simple closed curve in M. By remark 6.2

the curve b is boundary of a simply connected set A c M,

A being homeomorphic to the closed unit disc. By proposition
6.3 c¢) it is obvious that ¥ is transversal to b at

Y(0) = m = 5(7;) . Therefore it is easy to see that there
exists a small number ¢ > O such that either a; = vjo, st
or a, := ¥i-¢,0l are contained in A\ND .

Let k' € {-1,1} with ,€ A\b .

a
We prove now that 2, € A\Db implies

(6.32) Cpr 3= ?(Ik.) N {Y(yl e AND .

Agsume the contrary. Then Cp N b # @¢. Let Yy € (ck. n b).
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By proposition 6.3 c¢) the point Yy is a pica; there

exist two distinct (normalized) minimal joins ép(t), gq(t)
going from Y+ O p,q respectively and ép' §q have the

same lenght.

Now yk' e b . Say Yk' € 91 [O,f-—w1]. Thus let
Yir = 9q(t ). Then e := 9,00t Ty §q is a minimal

join from Xy to gq. This holds because e, := g1[O,tk,]u §p

2

having the same length as e, is a minimal join from Xy to p
and because d(xk,p) = d(xk,q). Therefore (by theorem 6.1)
e = g,. Hence t;, =0, as g, n g, = {x, }. Thus

Yicr é g1]O,f'-m1]. Using the same arguments we find that

Yo é 9,10, twy -r,]. Obviously Yir ¢ §[w1,w2]\ {m} .
Clearly ¥(0) = m # y,, = ¥(s) because s ¢ 1-6,6[ and as

¥ is an embedding. Thus Yo 7 % € 9aM , a contradiction
because yk.e W(Ik.) c C{p,q}\aM,. This proves (6.32).

We know now that Cpr < A\Db . Let (tn) be any sequence
in Iys with lim t, = k'. Then W(tn) has a cluster point
X in A and by proposition 6.3 e) X e M. Hence X € AndM .
Thus X eb as A\Db = A\NIA © M\BM . We know by

Lemma 6.3 that X is a generalized pica relative to {p,qg}.

During the proof of (6.32) we have shown:

(6.32') If a generalized pica X is contained in b then
X e {x, m}

This yields here together with {xk,m} A OM = {xk} that

(6.33) X = Xy

The next step in our proof will be to show

(6.34) ¢ = ¢ .
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The proof of (6.34) is long and needs several steps.

Therefore we shall explain now first how theorem 6.3 a1l

follows from the preceding considerations using (6.34)

Recall it remains to prove that in case m é M exactly

one of the statements (T') or ({l) holds. Clearly exactly

R must hold. It is

one of the statements (') or (AaT)
obvious that () is not valid in case (') holds. Hence
theorem 6.3 is proven if we can show that (-T) implies
(@) . For this (~T) implies, that there exists a sequence
tn in Ik with lim tn = k such that the sequence

d(¥ (o), Y(tn)) is bounded. Therefore the seguence W(tn)
has a cluster point X, € M. By proposition 6.3 e) the
point X, € dM. We proved in the preceding considerations
up to statement (6.33) that there exists a number

k' € {-1,1} such that for every sequence (t)) in Iy,
with lim t, = k' we get limW(tn) = X, . Now using (6.34)
we get Ik' = Ik . Thus for every sequence (tn) in I

k

lim t, = k' implies lim W(tn) = X - This is the

statement of (Q). Hence theorem 6.3a1) is shown using (6.34).

Proof of (6.34): We shall prove: (6.35) "There exists a

number § > 0 such that in Bg tu)i= ly e M / d(y,xk)i 3§}

all generalized picas relative to {p,q} belong to c. .

Clearly (6.35) yields (6.34) because we know from the

beginning that there exists a sequence W(tn) in Cy with

limW(tn) = X, . The proof of (6.35) uses considerations in

1) The symbol "~ " denotes the negation of a statement.
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a neighbourhood of the point X - Therefore we start now
with a description of this neighbourhood and we introduce

notations:

The point x, e M has in the space (M,d) a neighbourhood
Ulx,) with §[O,r1] n U(x,) = ¢ and such that U(x,)

2

o
is homeomorphic to H, := {(u,v) e R2 / v >0, u2 +vS <2}k

2
under this homeomorphism ' U(Xk) n oM is mapped on

{(u,v) e ﬁé / v = 0}; (u,v) Buclidean coordinates. We

identify the points in U(xk) with the corresponding points
o

in Hy; clearly x, = (0,0). Pick H, := {y€H, / |yl< 1},
| | the Euclidean norm.

We can obviously define:

L =min {t >0/ | g (&))[=11},

Y, :=min {t >0/ fg, (81 ]| =11,

Yy :=min {t >0/ J¥(&' -k't)| =1k

Clearly 1z, := g1(Y1) ;2 iE gZ(Yz) , 2 1= ¥(k' - k'y) are
1)

three distinct points. We introduce also polar coordinates

(r,¢) for the points in E, i= {y € R? / 1yl < 2}=IH i
we define for y € E,, r(y) := |yl and ¢(1,0) :=0,
$(0,1) = 3, $(=1,0) = 7.

We prove now first:

(6.36) The point z is contained in the subarc a of

a:={y e Hy / lyl] = 1} , & joining z, with z,

1

1) See also the proof of (6.38)!
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Proof of 6.36: Assume the contrary say we have:

(6.37) o(z) > ¢lz,) > o(z)

or (6.37") o(z) > ¢(z1)> ¢(zz) . ¢l(z) > ¢(22)> ¢(Z1),
¢(zz)> ¢(z1)> ¢(z)

We consider now first case (6.37). We define

[¥2]
il

({¥ere e, /7 el > k' - k'y[} o D,

[o]]
]

;= WeR® / Jyl= 1, 0 < 6 < olz) orgn < ¢ly) < 2m)

= ye® /o) =2 x, 0 <y <10

joN)
]

Now h := S v d1 8] d2 is obviously a simple closed

curve in E1 = {y e R2 / |y} < 1}. Therefore h is boundary

of a topological disc F, F ¢ E,. Pick a sequence of points

1

% vy # Xy and lim Vy S Xy Now

every point v in this sequence, being a pica, is initial

(Vn) € S, with |vn| <

point of two distinct normalized minimal joins
g1n(t), g2n(t) one of them going from v to p, the

other one going from vn to g.

It is easily seen that for one of those minimal joins

say for 9,4, ©¥ists a number € > 0 such that

g1n]O,E] € F~h'. Recall S \ {xk,z} is a C'-smooth,
one-dimensional manifold and the tangent of S at the
point Vn bisects the (nonzero) angle between g1n and g2n'
Since {p,g} n F = @, the path 9y, Must leave F. There-
fore we can define Yyp i min {t > &/ g1n(tJ € oF}.

Clearly g1n(Y1n) =z, ¢ d,.
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We prove now

(6.38) z1n\g s.

Assume the contrary, then we have two distinct minimal

joins ép' §q going from Z1n to p,q respectively.
By using techniques which had been applied in the proof
of (6.31) we f£ind that we have two minimal joiné

g1n[O,Y1n] U g g1n[O'Y1n]L)gq going from z, to p,q

p r

respectively. One of the paths ép, 3. say Jq must have

d
the same end point as Iop- Therefore Ion’ g1n[o’Y1n]U gq
are two distinct minimal joins with the same end points, a
contradiction. This proves (6.38). Hence

(6.38") Zi, € d1\{z} .

Now 910 contains a subsequence converging against a nor-
malized minimal join go(t) from Xy to {p,q}, say 9
ends up in p. Let a' := {yeH, / lyi= %}, and

d(a,a') =:n. Then clearly n > 0 and Yip > O for all

n € N. Obviously go[O,n]c F because g1n[O,Y1n]c F and
as F is closed. Defining y_ := min {t >0/ lgo(t)[ =1}

1)

we get
(6.39) go]O,YO[ c F \N3F and go(yo) € d1 \ {z} .

One can prove (6.39) as follows: Using the considerations
from the proof of (6.38') we find that go]O,n] An(Su dz) = @.
Thus gO]O,n] N OF = @ Dbecause n < 4 (xo,a). Hence

gO[O,n] < F \OJF as go[o,n] < F. Therefore we can de-

1) Inthe following considerations we show more than we need
for the proof of (6.39) and (6.36). However it will be comfortable to

refer to those arguments in subsequent parts of the proof.
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fine ;o := min {t > n / g(t) € 3F}. Clearly
9o GO,?O[) < F~9F . Using again the arguments from the
proof of (6.38) we find that go(§o) e d\ {z} . There-

fore statement (6.39) is shown if we can prove

] ! —
(6.39") Yo © Yo .
Now (6.39') holds if we have

(6.40) d, ={yeF/ lyi= 13.

We want to prove now (6.40). For this let z* be a point

in H, with jz*|= 1 and z* ¢ d,. Thus

(6.41) 2z¥ e a \ d1
For the proof of (6.40) we have to show that (6.41) implies
(6.41') z* € E, \ F .

It is easily seen that there exists a positive number
such that

(6.42) Eu(z*) n 3P =9,

with Ep(z*) := {yekE, / {z* - y| < u}.

1
we get G e E,\ F ; clearly G # ¢ and G<=Eu(z*).

By remark 6.2 is F < E,. Thus defining G := {y e EU(Z*) /lyl>1}

This yields using (6.42) and (J) that
. .
(6.41) Eu (z%) © E; \F

because Eu(z *) is path connected. This proves (6.41').

Hence (6.40) and (6.39) are shown too.
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We finish now the proof (6.36). One of the minimal joins
9.+ 9, has the same end point as 95+ Say gy, i e {1,2]
has the same end point as 9. By assumption (6.37) is

zZ, e a\d1 . Therefore by (6.41') we get
1
(6.43) z, € E, \NF .

Using arguments like in the proof (6.38) we find that
gi]O,Yi] n S =¢ . Clearly gi]O,Yi] n d2 = ¢ and
gi]O,Yi] n d1 = ¢ by definition of g and because

zg ¢ d,. Therefore

) P
(6.43") gi]O,Yi] n OF = ¢ .
Thus using (6.43) and (J) we get

(6.44) g,10,y,1 < (B,\ F) .

Hence (6.39) and (6.44) imply that there are two (as point
sets) distinct minimal joins from xy to p, a contra-
diction. The case where g is end point of g, can be treated
in the same way. It is obvious that the cases described by
{(6.37"'") can be handled using the same ideas as above in

the proof of (6.37). This proves (6.36).

We proceed now with the proof of (6.35). Let F be the
topological disc with 8F := S u 4, v d,.

By (6.36) we know that =z € &, & a subarc of a,

4 joining z, and z,. Let as assume say ¢(z1) > ¢(22) then

by (6.36) we get ¢(21) > ¢ (z) > ¢ (z,).

Therefore z, € a \ d and =z

1 ] 5 € d1\{z} . Thus by (6.39)
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and (6.44) we get
(6.45) g,10,Y,L ¢ FN2F
(6.45") g,]0,vq[ < (E;\ FJUdF .

For the proof of (6.35) we will argue by contradiction.
Therefore let us assume we have a sequence of generalized
1 . .
s ' 1 ' 2 [ I
picas (v' ) €5, A X, o v n‘ <5 with lim v} = x .
Then at least one of the following possibilities must hold:

(6.46) A subsequence of (vﬁ) is contained in F.
(6.46') A subseqguence of (vﬂ) is contained in E1 \ F .

Let us treat first case (6.46). Here an (equally denoted)
subsequence of (vé) must be contained in F\ dF because
vi¢ svu d, . Let ®n' %gn be the minimal joins going
from the generalized pica vé to the points p,g respective-
ly. By Lemma 6.3 we know that epn, eqn converge against
two distinct (normalized) minimal joins ep(t) ’ eq(t) go-
ing from X, to p,g respectively. Using the arguments from

the proof of (6.38) and (6.39) we find that there exists a

positive number ¢ such that
(6.47) ep]O,a] U eq]O,a] c F\JF

One of the paths ep, eq has the same end point as 947
here ep has the same endpoint as Iq+ Therefore (6.45")
and (6.47) imply that 94 ep are two distinct minimal

joins going from %y to p, a contradiction.

In case of (6.46') by similar arquments we get two distinct

normalized minimal joins ép(t), éq(t) going fram x, to p,q
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respectively and we find a number & > O such that
(6.48) ép[o,&] € (E,\NOF) v 3F
(6.48") éq[o,&] © (E;\3F) U 3F

Hence (6.45) and (6.48') imply here that 9y 5q are two
(as point sets) distinct minimal joins from X to g, a

contradiction.

It is obvious that all other possible cases for the assump-
tions in the proof of (6.35) (i.e. where say e.g. ¢(zz) >¢(z1)
and where say e.g. 94 is a minimal join from %, to q) can

be treated using the same arguments as above. This proves

(6.35) . Thus we have shown {6.34).

Using the preceding considerations the proof for the re-

maining parts of theorem 6.3 is now fairly easy.

Proof of theorem 6.3 azli We want to show first that

- U . 1) )
K = Y({1 v II) agreeswith C{p'q}‘\BM . For this,

let Yo € M \ M be any limit of picas in . We

C
{p,/q}
have to show now that yo € K. By Lemma 6.3, we know that

Y, must be a generalized pica. Therefore there exist exactly

two normalized minimal joins g p(t), g (t) going from

Yo Y4
Yo to p,q respectively; further

length g = lenght g = dly,, {p,q}) and g_ _ng ={y }.
Yo P Y,4 o Yp ¥d o
Like in the proof of (6.31) let J(t) be the normalized minimal join

from p to g. Let b, := ag ng +,b, = g ng and
1 YR

1) This means K is the only connected component of Cio q}\aM
Fagit }
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define b to be the closure of g \(b1 V] b2) . Clearly

like in (6.31) the point m is an interior point of b ;

and b¥:= (gyOP \ b)) v (gyoq\ b,) v b is boundary

of a topological disc B , B « M. Using the arguments

in the proofs of (6.31), (6.32), (6.32') it is easily seen
that there exists a number 1 € {-1,1} such that an initial

piece of V¥(I,\ {0})) is contained in B\ 38 and
¥(I) N (9 \ {m}) = {y }. Thus y_ € K. This shous

¥(L, v I,) = c{p'q}\am

Now we prove:

(6.49) C T(I1) v ¥(I,)

peay -
Clearly C{p,q} = W(;J) v W(I1) because every point

y € W(I_.I v I1) is a pica relative to {p,q}. It remains

to show:

(6.49") C{p,q} [ ( 1

For this let Yo € C{p,q}' We must prove that
Y, € Y(I_1) u W(I1) . Obviously, because of
‘P(I_1 U I1) = C{P:q} \3M we can assume that y_ e M .
Thus the boundary point y, is a limit of picas. K
Therefore using the proofs of (6.31), (6.32), (6.33), (6.35)
it is easy to see that there exists a (unique) number
1'e {-1,1} such that §o = lim ¥(t ) . (t ) an arbitrary

. . : _ 1 - R
sequence in I, , with lim t, = 1'. Thus vy, e W(Il.)-

This proves (6.49).

1) We can also assume that §o is limit of generalized picas,
it makes no difference here!
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Finally, using the considerations for the proof of (6.35)
together with the fact that ¥ 1s an embedding, it is
obvious that ?73j:) n E?E:T = {m}. Hence the proof of
theorem 6.3a2) is complete.

Proof of theorem 6.3 bq),b,)

We know by proposition 6.2 that there exists.
in M ~ M a pica relative to {p,q} .

Hence we can choose x' €¢C n (M~ 3M) .

{p,a}
By proposition 6.3c) we know that x' 1is a

pica relative to {p,q}. Let g be the minimal

x'p’ gxlq
joins from x' to p, respectively. Let g be the mininal
J Prgq P 9

join from p to g. We define b1 = gx‘p ng . b2

= gan ng
and we denote with b the closure of g \(51 v bz). Clearly like

in the proof of (6.31), (6.32) the curve b := (gx'p ~bpu (gx'p N by UD
is boundary of a topological disc B', B' © M. By propo-

sition 6.3b) exists a number €' > 0 and a C1-smooth embedding

¥orlt - e, t' + el - M~BM with t'=% g:=% , Y(eh) = x!
such that

@]t' - €, '+ el = A n % x') = ¢C B (x")

' {p,gql” "¢ {p,g}" "e ’
o)
Bo, (x') = {ye M/ dax',y) < €}. Using proposition 6.3c) we
know Y that there exists a number € > O such that

¥l t' - €, t' [ <« B' N\ 3B' . There exists a connected
component K' of  C. i\ M with ¥lt' - €, t' +e[ e X'.
Prql

We know by proposition 6.3d) that K' is the image of a

CT—smooth embedding of the intervall ]0,1{. Clearly we can

1) In case of need we change the orientation of V.
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assume that Y:1lt' -¢, &' +e [ — MM is a
restriction of this (here egually denoted) embedding
¥: Jo,1[ » mM\8M , with ¥(]O0,1[) = K' . Using (J) we

£ind that there are now two possibilities:
(6.50) W(1o,t'D) n 8B' # @,
(5.50') ¥1o,t'[) € B' \ BB

In case of (6.50) the considerations for the proof of
(6.32') imply .%10,t'[)n 3B' = {m}, a contradiction because
m e 3M. Therefore (6.50')holds.Usingpﬂxnsitﬂxm6.3e) (cf.

also (6.32), (6.33)) it easy to see that the set ?ﬂo,t'[)
has a cluster point x¥ e 3B'A 3M . Thus by (6.32') we

get x* =m .

A consequence of what we have shown up to now in our proof

of theorem 6.3b) can be stated as follows:

(6.51) “If K is an arbitrary connected component of

c \ 9 then medM is a cluster point of K."
{prq}

Combining (6.51) with the considerations in the proof of

(6.34), (6.35) we find that R = X' = ¥ 10,10). Thus

(6.52) XK' = ¥(JO,1[)= :c{p g3\ M -

By the preceding arguments and proposition 6.3e) it is

now obvious that for every sequence (tn) in ]0,1[ with

lim t = O the sequence ?(tn) must converge to the point

m. Thus defining ¥(0) = m, we can extend the map ?, i.e.:

(6.53) we have a continuous embedding ¥:[0,1[ » M .
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Clearly (6.52) and (6.53) make the proof of theorem 6.3b1)
complete. Theorem 6.3b2) is an immediate consequence of

the corresponding results in theorem 6.3a7) and theorem 6.3ap).

Proof of theorem 6.3c):

Let the point w e M be a generalized pica relative to
{p,q}. We shall prove that w is a cluster point of picas
relative to {p,q}. Clearly if we M \3M then w is a pica

and belongs to C{p g} Therefore let us assume w e 9M. We

'
know by proposition 6.2 that there exists in "MN3IM  a

point w being a pica relative to {p,q}. We use now con-
siderations similar to those we haye already applied several
times e.g. the last time in +he proof of

(6.51) . Therefore our proof will be very scetchy. Let gwp’
gwq be the normalized minimal joins from w to P.g respective-

ly. Denote with g-

+ 9= the (normalized) minimal joins
wp wq

from w to p,q respectively. Using arguments like in the

proof of 6.31 we find that Iap " Sug = P I5gn Iyp = ¢
Let h1 1= gwp'ﬂ g;p, h2 := g&q n gwp and define h' to

be the closure of <gﬁp\ h1) v (gﬁq N hy) . Like on page 191
the curve # := (gwﬁ\ )u h' v (gwq\ h,) is boundary

of a topological disc W. We know by theorem 6.3a2) and
theorem 6.3b1) that there exists a C1—smooth embedding

¥¥:= I_ U I, * M with ¥*(0) =w and ¥*(I_. u I

= C
1 =1 1) {p,q}\
Using the arguments in the proof of (6.32), (6.33) we £ind
that there exists a number k'eg {-1,1} such that

V(D) € (WN3W) \ {w} and w is a cluster point of

aM
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W*(Ik,). Hence w is a limit of picas because all points

in ¥*(I,,) are picas. This proves theorem 6.3 c).

Proof of theorem 6.3d): In case m#BM the claim of theorem 6.3d) is a

consequence of proposition 6.3b). Let us therefore assume
that me 3M. We argue by contradiction. Namely assume there
exists a sequence (C‘n) in A(p,q) with lim \7n = m such that
the following holds:

"There exist normalized minimal joins g_. ., 9., from Gn to

gn’ °p
p:g respectively and we have positive numbers gy such that

g [O,en] =gq

- [O,En]."

Pn

Let €  := max {e>0 / Ign [0,e] = Ion [0,e]}.

Clearly like in the proof Lemma 6.3 (see p. } the point

gqn(sn) = gpn(en) is a generalized pica relative to

{p,q} and gpn(En) € M. Thus by theorem 6.3 the point

€ )EC . i
gpn(en) {p,a} NosM. Let gmp(t) P gmq(t) be the normalized

minimal joins from m to p,g respectively. Since the sequences

gqn, gpn converge against gmq, gmp

gpn(En) must converge to m. By {6.34) there exists an open

neighbourhood U(m) in M of the point m such that

respectively the sequence

~ 1 -
U(m) n C{p qt € #ro,50) 5 ¥ :[0,1[ » oM an embedding

with Y(0) = m, ¥I10,i) = ¢C \ oM , cf.: theorem 6.3h,).
{qu} 1
Therefore there exists a number n, such that for all ne N with

n>n is g

- e 1 .
° (En) € U(m) “C{p,q} c ‘Y([O,—Z-[) . This

pn
yields gpn(en) = m for all n > n, because

(‘1’[0,—;—[) n3M = {m}. Therefore for all n > n, we have
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d(%n,m) + d(m,q),

[oN]
S
=]
Q
i

d(v_ p) = d(Gn,m) + d(m,p) .,
d(p,q) = d(p,m) + d(m,q)

This yields a contradiction against remark 6.6. Therefore
En = 0 for all n > n_. It is now easy to see that the

preceding considerations prove theorem 6.3d).
With the notations and assumptions of theorem 6.3, pro-
position 6.3a and theorem 6.3 yield obviously the follow-

ing

Corollary 6.4: For every point x € C{p q}\ dM there exists a
!

number t € M,1[, (£ € ]O,1[) and QE%%L p
(§Xé%l) bisects the angle built by the two initial vectors

of those two minimal joins going from the point x to the

points p and g.
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In the rest of this paragraph we shall be less pedantic
than in the preceding part of this paragraph. We shall
not always derive a claim in all details, when we be-~

lieve that the validity of a claim is sufficiently clear.

Remark 6.9: Let S be a simply connected space of type (%%).

Then at least for a large class of examples § must be homeo-

1), B:i=(xc¢ R2 /oIx] <1},

T an open subset of s i={xc¢ r? / x| =1}, | | the

o]
morphic to D U T

Euclidean norm. Further it is plausible that for any two
distinct points P.q the cut locus C{p,q} seperates S.

Namely using (J), theorem 6.3 and considerations like in
the proof of Lemma 6.3 then at least in case S is compact

it is clear that for any two distinct points p,q in S the

2)

set S ~C has two components K K €K GEXK
P Pr q I P pl 58y

{qu}
Therefore every path ¢ : [0,1] - S with <¢(0) = p,

c(1) = g meets C{p q} i.e. there exists a number
’

t, € 10,11 with c(to) € C{p,q}.Both components

)

KP, Kq are simply connected.2

1) In case S is compact this claim is a consequence of (J).
In any case S ~ 3S must be homeomorphic to the open
unit disc. Namely S ~ 35 1is simply connected because
S ~ 35S has the same homotopy type as S. The latter
holds because S5 ~3S is a weak deformation retract
of S, see [65] p. 297. Therefore say e.g. by the Rieman-
nian mapping theorem S ~ 3S must be homeomorphic
to the open two-dimensional unit disc.

2) This holds also, because in case S is compact it can
be shown that there exists a homeomorphism
h: S+D, D:=1{x€R/ x| <1}, and h (C{ }) is
a diameter of D, see [211, p. 141. P.q



- 197 -

Using theorem 6.3 we prove now a result which describes
the cut locus of a point in certain surfaces having

the homotopy type of an annulus.

Theorem 6.5: Let S be a closed bordered subsurface of a
space M. We assume that M is a two-dimensional, complete,
unbordered, simply connected Riemannian manifold with
curvature everywhere smaller than or equal to zero. 1

We assume further that S has locally rectifiable boundary

curves and that:

(¥)' S is homeomorphic to A := %1 viu %2 2),
+* *
A= {x €R? / 1< |x| <2}, T, = {x¢€ & / x| =1},
¥ 2
T, an open subset of {x ¢ R® / [x| =2},

1
| | the Euclidean norm .

Let p be any point in S. Then the following holds:

1} In other words M is diffeomorphic to the Euclidean
plane, M is complete and the curvature is on M no-

where positive.

2) Condition (%) says in short that $ is some kind of
generalized annulus. Note we can replace condition (#)
by the weaker one saying that S has the homotopy type
0of a circle! We use condition {#) only for technical
reasons to simplify the description later on!

We can replace condition (%) also by saying:

"If S is compact then S has exactly two boundary com-
ponents. If S is non-compact then 23S has exactly one
compact component."

It iswell known that under these assumptions M ~3§
has exactly one bounded component and this component
is homeomorphic to the open unit disc.
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The cut locus Cp is homeomorphic to one of the two
following intervals [0,1] or [0O,11.

We have a continuous embedding

¥:3+s, J e {lo,1], [o,10},
and
9(3) =cp .

The restriction
@/ : Jo,i 0+ 8
is a C1-smooth embedding and

y(Jo,10) = Cp ~ 38

We have

¥(o) € T,
T1 being the frontier and boundary of the bounded
component of M ~ S.

If 1 J i.e. Cp is homeomorphic to [0,1[, then

cp is unbounded. Otherwise ¥ (1) € 38 ST,

A point g belongs to Cp if g is a generalized pica D

relative to p.

For every point g € Cp there exist exactly two distinct
(normalized) minimal joins c1[O,d(p,q)] ’ CZ[O,d(p,q)]
going from p to g and there exists a number

$ € [0,4(p,q)] such that

Cf. definition 6.5.
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CT[O,S] = C2 [016]
and
¢ lé.4(p,g)] U cz[d,d(p,q;)]

1)
yields a non-trivial simple loop.

The loop

QLo a(p,a)] U ¢,[0,4(p,q)]

is homotopic to the (modulo orientation) unique shortest
non~trivial loop with base point p.

We have m ¢ Cp and d(p,m) = d(p,Cp), m being the

mid point of the (unique) shortest non-trivial loop

with base point p.

a¥ (t)
—at

angle built by the two initial vectors of those two

d) 12t g = V¥(t) € cp ~ 3S. Then bisects the

minimal joins going from the point g to the point p.

e) For every pair of points Wir Wy € S there exist
at most two distinct normalized minimal joins, going

from w1 to Woe

Proof of theorem 6.4:

We shall make use of the following assertion:

(6.54) Let r be any point in A < R2 and let

9yr 9, ¢+ [0,1] -2,

1) The number & is depending on p and g.
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= = = 1) =

g, (0) = g,(0) g, (M =g, (1) =

be any two non trivial simple loops in A with
base point r. Then modulo the orientation 94 and

g, are homotopic in a.

Assertion (5.54) holds because the winding number
of 9,0 9y with respect to any point

r € 8 = {x € R2 / lx| < 1} 1is contained in
{1, -1} , cf. remark 6.2. It is well known that
in the above space of type A < R® the winding
number with respect to any point in 8 determines
the homotopy class of a closed path in A. This

proves (6.54).

We shall also use the subsequent assertation:

(6.55) Let Pyr Py be any two points in S.
Let Gys Oy Qg [0,a] =+ S be three normalized
minimal joins from Py to Pyr then at least two

of them must be homotopic.

This assertion is intuitively very clear because a mini-

mal Jjoin cannot wrap around the boundary curve T1.

Therefore we think that we can ommit this proof. A detail-
ed proof of (6.55) can be given by using a rather lengthy
and tedious discussion of the possible positions for all
subloops of oy [0,alU o, [0,alu oy [0,al in relation

2

to the boundary curve TT'
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Using (6.55) we prove now:

(6.56) 1In the above space S any two points can be join-

ed by at most two as point sets distinct minimal joins. R

Proof of (6.56): Let Iyr X be any two (distinct) points

2
in S. Assume there exist three distinct normalized mini-

mal joins B, Bys By : [0,a] > s

going from r4 to r2. Then by (6.55) two of them say 61
and 83 must be homotopic. Let (5,d) be the uni-
versal covering space of (5,d), 7: S + S the covering
projection. We move along 81 [0,5] from r1 to T, s then
we move back to r, along 83 [0,a]. We denote the just
described path by g: [0,2a] + S . We 1ift g to S and we

-1

start the 1ift in f1 €En (r Denote this 1lift by

1)'

§ :10,23] + § . We have §(3) € 71 ' (r,) , let Ez 1= g(a).

2
Clearly 9[0,25] + § is nullhomotopic, because 31, 83
are homotopic. Therefore g(2a) = f1. Therefore theorem
6.2f) yields g[0,a] = gla,2a] because S is simply connect-

ed 2)

, Thus g[Q,E] = g[5,25]. Hence 81[0,5] =B3 [0,5],
a contradiction. It obvious that the remaining cases
where 81 is homotopic to 82 and 62 is homotopic to 63 can

be treated in the same way. This proves (6.56).

After these preparations, we start now the proper proof

of theorem 6.4. For this, let p be any point in (S,d).

1) We shall use (6.56) later on several times.

2) cf. remark 6.10 i.e. footnote 2) on the next page.
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There exists a shortest, non-contractable (normalized)

loop

@ : [0,2L] » S in S with base point a(0) = a(2L) = p R
2s above let (5,d) be the universal covering space of

(s,4) and let 7 :8 + S be the covering projection.

Lift the path o to é . We start the lift at scme point

;1 € ﬂ_1(p) and we denote the normalized lifted path

by & : [0,2L] » §. Clearly 52 := a(2L) € ﬂ_1(p) ~ {B;} and
2L = (B, By -

1?) m := o(L) € C{§1,§2} and

m := n(ﬁ) ECp .

By Theorem 6.3

There are now two possibilities:

(6.57)

e
-

@

w

(6.58) m € 28

We treat first case (6.57). By theorem 6.3 2) there exists

a continuous embedding
Y J uga > S

s, €lt-1,01, 1-1,01} , 3, €li0,11, to,103, ¥

1) cf. the proof of Lemma 6.2.

2) Remark 6.10: In order to apply theorem 6.3,6.2 we use here
That (5,4) can be viewed as a subspace of a simply con-
nected, complete, unbordered, two-dimensional Riemannian
manifold M without conjugate points. Now we explain
why this is possible. § is a subspace of M, M being
diffeomorphic to R? and the curvature on M is everywhere
smaller than or egual to zero. The path T, is boundary
of a topological disc B contained in M. We delete a
pohﬁ:po € (B ~ T1) from the space M.(Continued next page!)

3) Note this definition of J;1UJ1 is different from that
one used in theorem 6.31!!
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such that ¥(J , U J ¥(0) = m . The

) =C> =~ ’

restriction

Y TS v S, IR = ah s (51}, 3F s a1

1 1 1

. 1 : #* #) = -~ S .
is a C —-smooth embedding and ‘l’(J_1 U J1) C{p1,P2}\BS

Now we claim:

(6.59) H(C{§1'§2}) = Cp .

(6.60) A point g is in Cp iffq is a generalized pica )
relative to p. For every point ¢q € Cp there
exist exactly two distinct (normalized) minimal
joins c1[0,d(p,q)] , c2[0,d(p,q)] going from

2
p to g and there exists a number § )

€lo,d(p,q)]

such that c1[0,6] = c2[0,6] and c1[6,d(p,q)]‘u’
cz[d,d(p,q)] yields a non-trivial simple loop.

The loop c1[0,d(p,q)] u cz[O,d(p,q)] is homotopic to
to the (modulo orientation) unique shortest, non-
trivial loop with base point p. We have

m=T(m) € ¢, and d(p,C)) = d(p,m), m the mid
point of the unique shortest non-trivial loop with

base point p.

cont. footnote 2) (Remark 6.10) from p.

We change the metric on M~{p } in a small geodesic
disc B.(p) ~{p } < B ~T.° such that the new

space M°is® compleéte and has curvature everywhere
smaller than or equal to zero. Such a change of the
metric on M~{p_ .l is possible. This is intuitively
clear and can be shown precisely by a straightforward
construction on the punctured geodisc disc By(p ) ~ {p.}
Clearly this change of the metric and topology CSon M °©
has no effect on the intrinsic structure of

(8,d). Now § is a deformation retract of M. (cont. next page!)

1) c¢f. definition 6.5.
2) 8 is depending on p and qg.
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(6.61) mo¥:J g UJ * S

is an embedding, the restriction

to Y J¥

gV gf >~ s isa ¢'-smooth embedding,

* =
mo ¥(IZ, 0V J1) Cp ™ 3S

dn oV¥(t)
dt

bisects the angle built by the two initial

(6.61") Let g =mo ¥(t) € Cp ~ 38 then

vectors of those two minimal jons going from g

to the point p.

(6.62) If 1 €&J_,UJ (-1 ¢J_, V7 then

1 1)
d(m o W(tn),p) is an unbounded sequence for
every sequence (tn) in J_4 uJ, with

lim t, = 1 (lim tn = ~1).
(6.63) Jg_, = [-1,0]l.

(6.64) T o ¥Y(-1) € T1. If 1€ J—1 U J1 then

7o ¥(1) € (38 ~NT,).

In order to prove (6.59) we show first

(6.59%a) T(C{§1,§2})C cp

cont. footnote 2) (Remark 6.10) from p.

Therefore the embedding i : § ~» M induces an isomorphism
ig:m, (8) - n1(M), m.(8), m, (M) the fundamental groups of
s,.M regpectively. %herefore the universal covering

space (S, d) can _be viewed as a subspace of the universal
covgring space M of M, see [50]p. 179, example 11.5. Clear-
ly M is a simply connected, complete, two dimensional,
unbordgred Riemannian manifold without conjugate points.
Hence M > S has all properties wanted above.
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For this we proceed as follows. Let

= { x x) € C_ }.
G:=1xe¥WT_,Uud) /7x p
Now (6.5%a) is true, if we can prove that G is a non
empty, open and closed subset of \F(J_1 U J1) = C{§1,§2}.

Clearly G # ¢ because 7(¥(0)) =m € Cp anc¢ G is closed

because W(J_1 U aJ,) 1), Cp are closed and because 7 is a

1

local homeomorphism. It remains to prove that

(6.5%0) G is open in ¥(3¥ U I}

For this we show:

* #* .
(6.59¢) Let to € J_1 u J1 with ﬂ(W(to)) € Cp
then there exists € > 0 such that

n(‘!’(]to - €, to + ¢l)) e Cp'

Proof of (6.59¢): Assume (6.59¢) is not true. Then there

. , ) _ e ity .
exists a sequence t  with lim t, = t, and 9 == T(E)) ¢ C

for all n € N . Therefore
Ly = dlq,/p) < d(By, ¥(£))

Let e [O,Ln] be a normalized minimal join from q, to p.
Now lift en[O’Ln] to S , start the lift in q, := W(tn)

and denote the lifted paths by én[O,Ln]. Then we have
~ -1 ~ .
en(Ln) €T (p) ~ {p1,p2}

because

d(?(tn), én(Ln)) =L, < d(W(tn), 51) = d(W(tn),ﬁz).

1) Note all points in l‘y‘(J_1 U J1) are generalized picas
relative to {p1,p2}.
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Now

() ~ 1B, BN N B (¥(E))

is finite, v := 2 d(¥(t_),B,). Therefore & (L)) has a
cluster point B3 , B3 € a () ~ {5y, 52}

and én(Ln) yields an {(equally denoted) constant sub-

sequence én(Ln) = 53 . Therefore there exists

1)

lim én[O,Ln] = é[O,LO] , é[O,LO] being the normalized

minimal join from qo 1= W(to) to 53 '

lim L = L, = (3 ,B;) = d(q,,By) =a(q,rpy) = dlay/p)s

q = ﬂ(qo). Now let é1[O,LO] ’ é2 [O,Lo] be the minimal

o
joins from ﬁo to §1, §2 respectively. Then

m(&,[0,L, 1), m(&,[0,L,1), w(E[O,L, D

are three non-homotopic, hence distinct minimal joins
from 9 to p, a contradecition against (6.56). This proves

(6.59c) and completes the proof (6.59a).

It remains to complete the proof of (6.59). We have to

show that

T(¥(I_, U T = Cp .

Now it is easily seen that w(C } is closed because

{?1 1132}

we know now 2) that for all t € J3_, UJ we have

1 1
d(p, mo ¥(t)) = é(§1, ¥(t)). Therefore it is sufficient to

prove that

1) If necessary we take here for €_[O,L_] an equally
denoted subseguence. n n

2) By the proof of (6.59%a).
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(6.59d) in S every (generalized) pica qp relative to p

is contained in w(¥(J_4 U J1D.

Proof of (6.59d): Now we prepare the proof (6.58d).

If qp is a (generalized) pica relative to p, then we
have at least two distinct normalized minimal joins
c1[0,L'] , c2[0,L'] from p to qp and there exists

€ > O such that

cqL' - e, L'l n c2]L' - e, L'[ =@ .

We show that
(6.65) Ci[O'L'] U cyl0,L']

yields a loop h with base point p and h is homo-

topic to a non-trivial simple loop.

For the proof of (6.65) let

E:=max {e >0/ ¢, (L' =&, L) N cy(]L' -¢, L'D) = @}.

Clearly the point set

ez | I [ Y oz '
d1 : c1 [L e , L'l U c, [L e, L']

yvields an equally denocted simple loop with base point
Pz = c1(L' - ). We have that

(6.65a) the loop d1 is non-trivial.

Namely otherwise by theorem 6.2f) and the arguments used
to prove (6.56) the 1ift of d1 to § would collapse to

a minimal path joining two points ﬁE, @p, ﬁg € n—1(pg),

P € ﬁ_1(qp) . This yields a contradiction because d

_‘lS
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a simple loop. This proves (6.65a).

Further we have

(6.65b) ¢, [0,e] = c,[0,¢]

Namely otherwise c, [0,L'] , cz[O,L‘], EZ[O,L'] with

Ez[o,E] = c1[0,§} , EZ[E,L'] 1= 52 [e,L'] yield three

distinct minimal joins from p to qp, a contradiction

against (6.56). This proves (6.65b}.

It is obvious that the combination of (6.65a) and (6.65b)
proves (6.65). Now we complete the proof of (6.59d4). Com-

bining (6.65) with (6.54) we know that

(6.65c) the loop c1[O,L'] u e, [0,L'] (with an appro-
priate orientation) is homotopic toal0,2L] 1).

Therefore if we lift c,[0,L']J Uc,[0,L'] to § and start
this 1ift in §1 then the lifted path ends up in 52. Denote

this lift of c1[O,L'] ) cz[O,L'] by 51[O,L']U 52[O,L'].

2) .

We start the lift with 51[O,L'] . Let a = 51(L').

It is clear that in (§,d) 61[O,L'], EZ[O,L'] yield
minimal joins from Qp to 51, §2 respectively. Therefore

qp € C{§1'§2} because qp is a (generalized) pica. Hence

g = € Y{J ud = Crx = 9 -
F(qp) 9 F(¥{ -1 1)) m( {p1,p£)
This proves (6.594).

1) Recallal[0,2L] is the above shortest non-contractable
(normalized) loop with base point p; therefore by (6.65)
a[0,2L] is homotopic to a non-~trivial simple loop with
base point p.

2) We assume that we have here already the appropriate
orientation, otherwise we start the lift with cz[O,L'].
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Hence the proof of (6.59) is now completel

We also need:

(6.65") If c1[0,2L] is an arbitrary (normalized) shortest
non-trivial loop with base point p, then

01[0,2L] = af[0,2L].

Proof of (6.65'): It is easily seen that a1(L) is a ge-
neralized pica relative to p. Therefore by (6.65¢c) (with

an appropriate orientation of u1[0,2L]) we can assume

that a1[0,2L] is homotopic toal0,2L]. Therefore we have

in § lifts &1[0,2L], alo,2L] of a1[0,2L],a[O,2L] respective-
ly, with 51[0,2L] , al0,2L] being minimal joins from

51 to 52. By theorem 6.2f is 61[0,2L]= al0,2L]. Hence
01[0,2L] =T o0 81 [0,2L] =7wo al[0,2L] = of0,2L] .

This proves (6.65").

Finally, for the proof of (6.60) we shall use that

(6.60"') we have m = 7(m) € CP and d(p,Cp) = d(p,m),
m the mid point of the (modulo orientation unique),

shortest, non-trivial loop with base point p.

Proof of 6.60': By the proof of (6.59¢) d(p,2) =A@, 7(2)

Z ~ . Hence b (6.59)
for all z € c{p1,p2? Yy

a(p1, C{§1’§2}) = d(p,Cp). Therefore using theorem 6.3

we get d(p,,M) = d(Py, C{§1,§2? = d(p:Cp) = d(p,m) .

This together with (6.65') proves (6.60').
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Now the proof of (6.60) is an immediate consequence

of the preceding results. Namely by theorem 6.3 every

point in C;~ =« is a generalized pica. Therefore by
{py/py}

(6.59), (6.594), (6.56), (6.65a), (6.65b), (6.65c),

(6.65'), (6.60') the proof of (6.60) is complete.
P

We start the

Proof of (6.61): We have to prove:

(6.61a) The mapping 7 o ¥ : J_1 U J1 > S5 eM
1)

is injective .
In order to prove (6.6%a), we show first that

(6.61b) the restriction 7 o W/ e J=1,1[ » S ~38 cM

is injective.

Proof of (6.61b): We argue by contradiction. Assume there

exist t1, t2 € 1-1,1I , t1 < t2 with 7 o W(t1) = noW(tz).

It is easily seen that the closed path 7 o V¥: [t1,t2]+ M

contains a simple, closed subloop £ 2)

. Now £ is in M boun-
dary of a closed topological disc F.

We know that p ¢ f because p§ CP for d(p,CP) =L>0
by (6.60). There are now two possibilities

pE€F~IE or pPEMNEF

Assume p € F ~ f . Then pick any point x € (M ~F) N 8 3).

1) (6.61a) is only a necessary condition for (6.61).

2) Recall the restriction W,:[t1,t2] + (S ~ 38) is a cl-
smooth embedding and 7is a local diffeomorphism.

3) It is easily seen that (M ~F)n S #¢ , (F~ f)n s # @.
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There exists in S a minimal join Cy going from p to x.
Clearly by (J) Cy must pass through £ < Cp n (s ~ 3s).
However, it is obvious that c, is not any longer a minimal
join to p after passing through CP ~ 2S5, a contradiction.
The analogue argument works if p € M N~ F. This proves

(6.61b) .

We proceed now with the proof of (6.6%a). The interval

J_1 U J1 has a priori one of the following types:
a) 1-t,iC , b)Y [0, ¢) 1-1,11 &) [-1,1].

It is obvious that mwo¥(1), m o¥(-1) & = o¥(1-1,1[) "
because { mo¥(1),n o¥(-1)} <« 3S 2)
Therefore in order to complete the proof of (6.61a) it
remains to discuss in case d) the possibility

mo¥(=1) = 7mo¥(1) = y € 3S. In this case, locally in a

neighbourhood of the point y the topological situation

looks as described in figure 6.1 below.

Figure 6.1

1) In case b), c) or 4d).

2} Recall by theorem 6.3a

), 1f -1, (or 1) € 3, U J
then ¥(~-1) (or ¥(1)) €4sS. -

1 1

and mo¥(]1-1,1{)e s~35 .
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1)

This means the cut locus Cp seperates in S a small

2)
3 -

neighbourhood U of y in three disjoint regions A1, A2, A
We can choose in every region a sequence of points

Yin € a,, Yon € Ryr Y3, € Ay with 1lim (y1n) = 1lim (y2n)
= lim (Y3n) =Y-

r Yonr

respectively, because those

The initial pieces of minimal joins going from Yin

to p stay in A1, A,, A

¥3n 20 B3
minimal joins do not cross the cut locus CP. The cluster
points of those sequences of minimal joins yield at least
three distinct minimal joins from y to p 2), a contra-

diction against (6.56). This proves (6.61a).

We complete now the proof of (6.61) and we derive also
(6.62). We showed in our proof of (6.5%a) that for all

¥(t) € 6{131'152} we have d(¥(t) ,By) = a(n(¥(£)),p).

Therefore by theorem 6.3a1) we get

(6.62) If 1¢J_ 4 VUJy, (-1 €J_; VU J,) then for

every sequence tn in J_1U J1 with lim in = 1
(lim tn =) the sequence d(m o W(tn),p)js un-
bounded.

Using (6.62) it is now easy to see that woV : J_4 U J1 > 5

is proper. The latter together with (6.61a) and the con-

1} The cut locus Cp in figure 6.1 is dotted and 3§ is
described by the horizontal, non-dotted line.

2) cf. the considerations in our proof theorem 6.3.
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tinuity of . moY implies that mo ¥: J_4 U J1 + 8§ is a
continuous embedding. Further the facts that

¥ gk ouay - 5~ ch isa C'-smooth embedding )
and that m: ﬁ + M is a local diffeomorphism imply that
T oV : Jf1 ] JT + (8~ 938)¢c M is a c'-smooth embedding.
Obviously m o ¥(JZ, v i = cy > 38 Dbecause

LA CASI JT) = C{§1,§2}\ 38 , by theorem 6.3. Hence the
proof of (6.61) is finished.

Using now corollary 6.4 we easily get (6.61'). This proves
(6.61') ., We prepare now the proofs of (6.63) and (6.64).
Por this let

61 :=max {8' >0/ alL-8"',L] N alL,L+8'[ = @} ,

a :[0,2L] =+ S the shortest non-trivial loop with base
point p.

Clearly 6, > 0 and

1
£, = all - 61,L] Ua [L,L +61]

is a simple subloop of «[0,2L]. Now f1 is boundary of a
closed topological disc Fq contained in M. This topological
cisc F1 is not contained in S because f1 is non-trivial

by (6.65a). It is easily seen that F1 containing points of
M ~ 8 contains the bounded component K1 of M ~ 8. Clear-
ly F1 being closed also contains the frontier T, of X,. We

1 1
prove now

(6.66) F1 ~ f1 contains no point x belonging to 3§ -~ T1.

1) This holds by theorem 6.3.
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Proof of (6.66): We argue by contradiction. Assume there

exists x € (F1 ~ f1) N (9s ~ T1) and let K be the
component of 3§ containing x. Clearly x is a point in
the frontier of a component Ux of M ~ S. There exists
only one bounded component K1 of M ~ S. The frontier of
K1 is T1 and x § T1. Therefore U, is unbounded. Hence

Uy contains a point u ¢ Fqy. Since x € Fo> f1 is a cluster

point of Ux there exists a point x' € Uyx 0 (F1 ~ f£.).

1
Since Ux is path connected there must exist a path n < UX,
anmmgx'thux.mwme W'U)nﬂf1#¢,acmv

tradiction because n < Ux cM~NScM~ f1 for

f1 < af[0,2L] < S . This proves (6.66).

Using from above that T1 c P1 n 3s, (6.66) yields

(6.66a) (F1 ~ f1) nas <t

1
We shall make use of (6.66a) later on in the proof (6.64).

Next we derive some more statements for the proof of

(6.63) and (6.64).

Using corollary 6.4 we know that for (some sufficiently
small € > O0) m o ¥[-e,e] 1is transversal to f1 at

Mo ¥(0) = m. Therefore with an appropriate orientation

of ¥ there exists € > 0 such that

(6.67) To ¥ J-¢,0 < F1 ~ f1

and 1 o ¥ ]O,el c M~ F1 .
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Next we prove that

(6.68) f1 n Cp =m = ToY(0)

Assume the contrary. Then there exists a redl number v,

0<|v] <L and a(L + v) € £, 0 C,. Clearly

L* := d(a(lL + v),p) = L-|v|] <L .

By (6.60) we have two distinct minimal joins Cqr € from

2

p to g and c, U ¢, yields a non-trivial loop with base

1 2
point p and length 2L¥ <2L. This gives a contradiction

because the shortest non-trivial loop with base point p

has length 2L. This proves (6.68).

Now we finish the proof of (6.63) and (6.64). Combining

(6.67), (6.68), (6.61) ') and (J) we find

(6.69a) T O W(J_1\{O}) c F1 ~ f1

(6.69b) T o ‘Y(J1 ~{0}) e M~ F1

Hence combining (6.69a) and (6.62) we get =1 € J_q-

This proves (6.63).
By theorem 6.3 Y¥(-1) € aé. Thus using (6.69a)

T o ¥Y(-1) € 35 n(F1 ~ f1).
Therefore using (6.66a) we get moV¥(~1) € T1.
This proves the first part of (6.64).

If 1 €J_, UJ, then by theorem 6.3 ¥(1) € 3§. Hence

m o ¥(1) € 3S. Therefore combining the fact that T1 c F1

with (6.69b) we easily get the implication:

1) Here we use from (6.61) that 7 o ¥: J_

v J1 > M is
an embedding.

1
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"If 1 € J_1 U J1 then 7w o Y¥(1) € 35 ~ T1."

Hence the proof of (6.64) is complete.

Clearly (6.61') is now an immediate conseguence of corolla~
ry 6.4. Therefore now all our claims (6.59), (6.60),

(6.61), (6.61'), (6.62), (6.63), (6.64) are proved.

It remains to treat case

(6.57) & = &(L) € 38 .

In this case we get with some minor obvious modifications
(based on the modifications in the corresponding part

of theorem 6.3) the same statements as in case (6.56).

It is easily seen that in case (6.57) all these state-
ments can be proved using the same methods as in case
(6.56). Therefore we omit the proofs and give only the sub-

sequent results.

By theorem 6.3 there exists a continuous embedding

Y J1 -+ §

3, € {10, [0,10)

e
O
=
i
=H
m
Q2
e

such that W(J1) = C{~ ~
The restriction

v, : 10,1 » 8

is a Cl-smooth embedding and
¥(1o,10) = C

{ByBy) ~0% -
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We have:
1

(6-70) '”(W(J.I)) = H(C{§1’§2}) = Cp

(6.71) A point q belongs to Cp if g is generalized pica 2)
relative to p. For every point g € Cp there
exist exactly two distinct (normalized) minimal
joins c1[0,d(p,q)] , cz[O,d(p(q)] going from
p to g and there exists a number 63)€ [o,d(p,a)]
such that c1[0,6]= c2[0,6] and
c1[5,d(p,q)] ] c1[6,d(p,q)] yields a non-trivial
simple loop. The loop c1[0,d(p,q)] ] c1[o,d(P:q)]
is homotopic to the (modulo orientation) unique
shortest, non-trivial loop with base point p. We
have m = ©(m) € QP and d(p,CP) = d(p,m), m being
the mid point of the (modulo orientation) unique shortest

non-trivial loop with base point p.

(6.72) wmoV : J1 + S
is an embedding, the restriction
T O W/ : Jo,1I » s is a C1-smooth embedding,

v (1o, = C_~ 3S.
T o ¥Y(10,11 ) Cp

1) In the first step for the proof of (6.70) one can

show:
(6.70a) There exists € > O such that w(¥[0O,e [) =« C .
The proof of (6.70a) uses the same methods as the P

proof of (6.59c). After this step the proof of (6.70)
is literally the same one as the proof of (6.59).

2) Cf. definition 6.5.
3} & is depending on p and .
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dmo¥ (t)
dt

bisects the angle built by two initial vectors

(6.72') Let g =17 o ¥Y{(t) € Cp ~ 3§ then

of those two minimal joins going from g to the

point p.

(6.73) If 1% Iy then for every segquence tn in Iy
with lim tn =1 d( o W(tn),p) is an unbounded
sequence.

(6.74) T o Y(O) €T If 1 €7 then 7 o ¥(1) € 38s ~ T .

1° 1 1
Combining the preceding main results of case (6.56) and
case (6.57) we finish now the proof of theorem 6.5):

The combination of (6.59), (6.61), (6.70), (6.72) proves
theorem 6.5a). Further (6.62), (6.63), (6.64), (6.73),
(6.74) imply theorem 6.5b), (6.60) and (6.71) imply theo=-
rem 6.5¢), (6.61') and (6.72') prove theorem 6.54d),

(6.56) proves theorem 6.5e).

Hence the proof of theorem 6.5 is complete.
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APPENDIX

We give in the appendix technical lemmata which are
used in the proofs of major results in this paper.
The following lemmé A.{ is used in the proof of theo-
rem 3.1. (We realized that H. Federer has given in
(291 p. 434 a proof different from ours for an-
other version of lemma A.{.) Lemma A.{ is contained
in the subsequent lemma A.1. However, since we use
lemma A.{ in our proof of lemma A.1 we start now

with the statement and proof of lemma A.1.

Lemma A.i. Let £ be a real valued function defined
on an open subset O of R%. Further let w:0 + R" be
a continuous vector field on 0. Now if f is locally
Lipschitz continuous and if its gradient at those
points where it exists equals the value of the
vector field w, then f is a CT-smooth function on O

and gradient f equals w.

EEQQf-Qf-l?T@é_é;i; Let x be an arbitrary point in
0O and let us restrict our further considerations to
a small compact ball B with center X such that we
have f Lipschitz continuous on B, BcO. A theorem of
Rademacher and Stepanoff see [30] p. 216/218 tells
us that £ is almost everywhere differentiable in B
relative to the n-dimensional Lebesgue measure in rR™.

The proof is done if we can show that for any given

e>0 exists a positive number §(e), such that
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+h
»
!
o3
'
h
®
l
£
b
=
A
m

if

Here h is a vector with an arbitrary direction and
w(xo) is identified with the corresponding linear
mapping. First since w{ ) is uniform continuous on

the compact set B, we can choose é(e) so small that

lw{x+h) - w(x)! <

OS]

X, X+h being points in B. Let us take now an arbi-

N o . : h
trary but for the seguel fixed chosen direction —,

h#0. We consider a product representation oI the

n

s . n . . .
n-dimensional Lebesgue measure [ in R relative to

the subspace spanned by i and the hyperspace ortho-

. h \ ‘ .
gonal to ——. We know that on almost all seagments
T
b h oo, - . . .
parallel to — the function £ has almost everywhere
o
h
a gradient in B relative to the 1-dimensional Lebesgue

measure on those segments. This is true because for

a set of L" measure zerc almost all sections of this
set chosen relative to some product representation
of L™ must have measure zerc relative to the corres-
ponding lower dimensional Lebesgue measure of that

s S .
representation of L ; this is a consequence 0of a
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theorem of Cavalieri-Fubini see e.g. [56] p. 384
or [30] p. 115. Therefore, on a dense subset of

segments parallel to b the function f has L1 al-

|

most everywhere a graézént in B. Now if e.g. on a
segment §O+sh, 0sss1, the function f has a gradient
for almost all s in [0,1], then the function

s & @p(s) := f(;o+sh) is C1-smooth on [0,1]. Namely
the function s » ¢ (s} being Lipschitz continuous
can by a well known theorem be represented as an in-
tegral of its derivative é(s) which coincides here

for almost all s in [0,1] with the continuous func-

tion s = w(xo+sh)h. This holds because we have here

o(s) = gg £ (x_+sh) = f{x_+sh)h = w(x_+sh)h,
S=s

if £ has a gradient at §O+sh. Therefore, we get

o(s) = w(§o+sh)h for all s in [0,1]. This yields

A

[£(x +h) - £(x)) - wixh| = [0(1) - 0(0) - o(0)]"
(A.1) .
$max | ©(s) - ©(0)| < max |wix_+sh) - wix )|lh| ¢ & |n|
0gs<1 o¢ss1 © ° 4

if |h| < 6(e) and if lx_-x_ !, 8(c) are both say

smaller than half the radius of B. Finally in order

to prepare the last step for the desired estimation,
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remember once given h, 'h' < §(g) we are free to
choose io arbitrary close to X, such that the in-~
equality proved above in (A.1) and the following

inegualities hold simultaneously. Those are

£(x +h) - f(§O+h)f < 'ht,
flxg) - £(x) < g !
: _ a ) £

and vW(XO) W(Xo). <z -

Thus we get

[£(x +h) - £(x) - wlxg)h' - TiT -
= 1E(X,R) - £(xg) - wixg)h + £lx_+h) -
- E(Rgen) ¢ £(x) - £(xg) + (wixg) - wix))nl - ,;. <
| - = > ' 1 : =~ '
< }f(xo+h) - :(xo) - w(xo)h; - +,f(xo+h)-f(xo+h)i%;T
v lExy) - f(;o"TiT < wilxg) - owixg) s 45 = e

and we are finished with the proof of lemmz A.71.

The subsequent lemma A.71 is used in the proof of
theorem 3.1.

Lemma A.7. Let £ be a real valued function defined
on a locally compact and locally convex body U in r".

n . : . PR 1
Further let w:U - R be a continuous vector ifielé onU.
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Now if f is locally Lipschitz continuous and if its
gradient at those points where it exists in UNAU,
equals the value of the vector field w then f is
a C1—smooth function on U and gradient f equals w,

3U denotes the boundary of U.

Proof of Lemma A.1: For the concept of the differentiability of

functions defined on convex bodies in R" we refer to
£77] p.17-18. More generally we explain in [77] p.
17-18 that it makes sense to differentiate functions
on subsets of R" which satisfy a cone condition. By
lemma A.{ we know that f is C1—smooth on UN0U. There-
fore, it remains to prove that f is differentiable

in an arbitrary boundary point p=0€3U and

(grad £) (0) = w(0). For this, we are done if we prove
that there exists a function [0,Rl:r » Y(r)elo, =]
with limy(r)=0, such that say

-0

(A.2) |F(O+h) - F(0) - w{O)h{ £ w(lh!)Inl

if h is any vector in R with {sh/s€l0,1]lc UﬂBR(O)
BR(O) a closed ball with center O and radius R. Choosing
the positive number R sufficiently small we can assure
that B3R(O)ﬂU is a compact, convex neighbourhood of
the point O in U. Define

(A.3) v(r) := max{ |w(0)-wi(x)]| /X€U,\x§§2f},

|.| the Euclidean norm in R®, Then ¥ is monoton increasing,
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and lim Y¥(r) =0 .
r+0

et h €U N BR(d).

Case 1: h € 3U. Then by convexity = {sh | s€10,1]lcUu ~ 3U .
By Lemma A.1' the function F is C1-smooth on U ~ 3U.

Hence the mean value theorem yields

[F(h) - F(O) - w(0) h | < sup | DF(th)h - w(O)h |
telo,1l
= sup | w(th)h - w(0)h |
te ]o,1]
(a.4) < ¥ (‘l%l) h| .

Case 2: h € 3U, Let L be a Lipschitz constant for the
restriction of Fon U N BR(O)' Choose h € (U n BR(O)) ~ 83U

such that

|h - | < min {|h| —-iﬁl——————— 1.

L +w(0) +1

Then

F(h) - F(0) - w(0O)h < |F(h) - F(h)|
+{F(h) - F(0) - w(0O)h|
+ |w(0)h = w(0) h}

(A.4) < Llh-h] + W(l%l)lﬁ[ + |w(oy| |h-h|
< 1%+ ¥(n)) - 20n|
{a.5) < (|n] + 2 %(|n])) |n]

i

Hence defining ¥(|h|) (In] + 2 ¥(|nl)
and using (A.4), (A.5) and the monotony of ¥ it is now

obvious that the proof of Lemma A.1 is complete.
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Lemma A.2. Let C be any set in a unbordered complete
Riemannian manifold. Assume there exists £>0 such

that for all gecC the exponentialmap exp, is a diffeamcrphism
on the Euclidean ball B (0). Then we have a continuous
function C x [0.¥€] = (qfa) » K{g,g) € {0,= [ with

the property described below. Namely let B (gq) be a
representation in Riemannian normal coordi;ates for a
distance ball with radius t and center g£C, | § the

Euclidean norm related to this chart. Further let

q qE be points in B_({(qg) with |q

)

= |g_! = e such

O' ol c!

that the minimal geodesic from 9, to g  meets g=0. Then

for any point g, £ B_(g) with iqé‘ =g, § = 1qo_q6!
we get
dlg,.,q) € |q. - a_| + 2K(q,e) ¢ &
. §'7e’ = 178 £ ISR
Therefore defining K(q) := max {2K{q,e)/e € [0,E]} we
have d(qé,qe) < [q6 - qa! + K(g) ¢ 8§

Proof. We estimate the Riemannian length of the Eucli-

dean segment connecting 9. and g .. We shall use a polar-

8

coordinate representation of this segment and intro-

duce notations explained in the following figure.
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L8 X T~
/ j I\ T~

I[/ {,_ e ——— A — — R \.\

,/ il )

l /; 9

é K\ q s(h y/ﬁwi

— : i
~
t
N
Let t » (o(t),r(t)). Ost<s§ be a polar coordinate re-

presentation of the Euclidean segment C(t) in B (q)
€

joining qE with q6 the pclar coordinate representa-

tion choosen relative to the Fuclidean Z-plare P6 con=

taining the points T g=0, qe. Denote the Riemannian
length of the segment c{0,§] by LR(%,Q) or LR in

short. Then we have

v

§
(A.6) dlagz,a) €Ly = [ JE (B +g,, (x(t),0(e))ole)® at
o

with g22( )

related to the metric in the surface equ(Pa). We

assume now the validity of the following inequality

(*) gy, (x(t),0(t)) s 2(£) + Kig,elzr? (t)
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with O$K(g,t) independent of the 2-plane Ps contai-
ning g. Using inequality (*) which we shall show at
the end of this proof, we get from (A.6) the follow-

ing inequalities

o
i~

182 +r2 62 +riK(q, c)o? at s

(A.7)

1
Vo2 27’ 7
[E7eri6? ¢+ —2—— at

Note in order to abbreviate the notation we write K
instead of K{g,e) and we omit the argument variable t.
The last inequality is immediate from the mean value
diw' .

theorem since a;— is decreasing - for xz20.
Namely if we apply in (A.7) the meanvalue theorem
to the first integrand jJa+h , a := ¥Z+r? §? ,

4 1 Paaen R .
h :=r sz2 we get TJat+h = ﬁ; dv“(a+ah) h Va de(a)h

¢ a certain number in [O0,1]. This proves (A.7). The

second ineguality in (A.7) leads to

¥ 1 1
- — —_ Ty 2
LR§1q6 qI+OJ’~ . (r7 5 K0?) dt
1462 (1)

because we have in appropriately choosen Euclidean coor-

dinates (see figure) (t,h(t)) = C(t} and therefore

AT T
¢q+h2(t) = ld*C(t)| = /r2+r2@;1 . Now a look at

the figure tells that h(t) = - %
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TR

i n
and |qz-q.| = 182+e? . This gives

¥ ¥ 1 1

lag-ac| V3.2 he@H7 fedien?

This yields together with the last inequality the

following
1
(A.8) Ly s lag - q. | + — {r? (x2%?) at.
lag-a.l ©
. . v
Using again V@2+r2¢2 = v1+52 = V1+(g/<§)2 we get
rig? = (1+(%/g)’-f2). Thus we have
n,
8 oA ,
(2.9)  [fr2(r?¢?) dt = [r?(1+(e/6)? - £?) at.
o o

We bring the integrand on the right hand side of (A.9)

now into a form which is easier to compute. For this
£ (t) = s (t) + t? leads to £(t) = SE)S(tI*E
Ts2 (t) +t2
4Y
Further s%nce obviously s{t) = & - % t we have
§(t) = - % . Now we get combining these facts and

omitting the argument variable t in the subsequent

expressions
(A.10)
v P
2 - (&2 = f2 - 42 = 5262 +2tsB+t?-5? (s?+t?)
¥ s?+t?

§t(2s~8t) + t2 _

r2
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(- 2 tlz-t2) 2+t2) 482
§ L

rZ

N v T
(-e/8)t(2e~ ) o+ £2

-2

Therefore combining (A.9) and (A.10) we get

LY

8 ¥
fre(r207)at = [ri+(268/8)t - (Y/8) 2162 - g2 gr <
[e] Q

< e?¥ + Y
This yields together with (A.8)

te)e

=
=]
[
le]
=)
]
\Q
™
+

o
< Iqs—qe| +62§K(2€+5) <

N o Y
because obviously e££2¢, sélqd—q£| and 6§6=[q0—q6|.
Thus we have proved lemma A.2 assuming the validity of

inequality (*).

Proof of inequality (*):

Although inequality (*) is more or less well known we
give now a proof for inequality (*). We do this for

two reasons. First we do this for the sake of complete-
ness. Secondly we do not know of any reference coﬁtai—

ning a detailed and explicit argument concerning the
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continuity of the function (q,t) = K(g,e) in in-
equality (*). Let S(t), W(t) be a pair of ortho-
normal vectors in P, with c(t) = (r(t), o(t)) = r(t) s(t).

Omitting the argument variable t we have

2

(a.11) gzz(r’w) = (dequ(rS))rw exp (rS)
g

Since exp() 1is a Coo -smooth mapping the map
0
Yy :+ TM ® TM + R defined by

2
exp (x)
q

Yig,x,y) := (deXPq(x))y

x,yETqM is a ¢” -smcoth map with three independent

(vectorial) variables, and we have

2
equ(rS).

(a.12) V({g,rS,r¥W) = ](dequ(rS))rWl

Now using a Taylor development we get

(Aa.13) Y (q,rS,rwW) ¥{q,0,0) +¥'g,0,0)(0,r5,rW) +

1 v q,0,0 0,r8,m*

+

Riq,rs, o) (2r)*

+

Hére we define | (0,5,W)| := |s| + |w| anda v ™ (q,0,0)

is a multilinear map denoting the n-th derivative of
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¥( ) at the point (g,0,0) and

(Olrsrrw)n = ((Olrslrw) Fee ey (Olrslrw))
A J

If () is C*-smooth the remainder term R( ) is con-
tinuous and we have R(g,0,0) = O for all g€éM. Now
for a fixed given point g and a fixed given ortho-

norrnal pair of vectors S,W in TqM we define

$(r) := ¥(q,rS,rW) and get
(n)
(a.14) 40 (r) = v™(q,0,0) (0,5,m™.

dr
'r=0

Using [25] p. 16 we have

U(r) := 0+ 0 +r? +0 - % <Rq(W,S)S,w>qr4 + O(r5),

Rq(.) the Riemannian curvature tensor at the point q.

This gives in combination with (A.11), (A.12), (A.13)

and (A.14)

(8.15) g,,(r,0) = U(q,zS,sW) = x? - % <Rq(w,s)s,w>qr4 T

+ ﬁ(q,rs,rw)16r4.

Defining K(g,e) := max {- %<Rq(W,S)S,W>q .
+ R{q,rS,rW)/ Osr<e,

s,WETqM,is\ = Wl =1, <s,w>q = o}
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the continuity of the curvature tensor and the con-
tinuity of the remainder term R( )} assure that this
definition of K(g,e) makes sense and guarantee the
continuity of the function (g,c} =+ K(g,e). This proves
(*) because of (A.15) and finishes the proof of lemma

A.2.
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Lemma A.3:
Let M be a Riemannian manifold, g €M, and r,s > O

such that the compact geodesic ball B (qo) M ~ M is

r+s
contained in the domain of Riemannian normal coorindates

centered at d5- Let |.| denote the norm corresponding

to these coordinates, and let |.| denote the Riemannian
norm on the tangent bundle. Then there exists L > O

such that for all q,d € B (g ) and v€ T M, v € TiM with

vl vl < s we have

d(exp, (v), expz(V)) < L(d(g,q) + v - v]).

q
Proof:
Let f£,F > O be such that

£ olx-y|l < d(x,y) £ Fix-y)

for all x,y € Br+s(qo), see proposition 4.1. Then using
a standard estimate from the theory of ordinary different-

ial eguations we obtain for some constant C > 0

d{expq(v), expa(G))j_F Iequ(v) - expa(G)]

|~

FC(lq - q| +|v - v|)

A

FC (3 d(a,@ + v - ¥

|~

FC (1 + P (dlq,d + v -7

)
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Lemma A.4: Let B be a compact subset in a bordered

or unbordered Riemannian manifold M. Assume there

exists € > O such that expy KE(O)1)+ exp, (KE(O))CM\BM
is a diffeomorphism for all g € B . Then there
exist numbers G, F > O such that the following holds:

Let g be any point in B then for all x,y € TqM with

Ix], vyl < & we have

(#¢) G d(equ(x), equ(y))f_ |x=y| < F d(equ (x), equ(y)),

|.] the norm in TqM.

Proof of Lemma A.4: Clearly

d(equ(x), equ(y)) < length {equ(x+t(y—x))] t € [0,1]1})=:L.

Let c(t) := x + t{y-x) then
1 2)
L= J | (Dexp (c(t))) e(t)‘ at
| q exp (c(t))
) q
1
< | J ‘Dequ(c(t)). jett)] dt ) =: L,
o equ(c(t))
Dexp (c(t)) | the norm of the linear map
q jexp (c(t))
g
Dequ(c(t)) : Tc(t) M — Tequ(c(t))Mi Since B is compact

there exists

1 K (0) = {ve T M / !vlq < e}

2) Here ¢&(t) = égégl and Dequ(c(t)) denotes the differ-

ential of the exponential map at the point c(t) € TqM .
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o= max’{IDequ(v)| v) / Vg€ TB . |Vq| < e},

X
epq

Thus
[1
L<a ] fetey ] = alx - vl .
o]

Therefore

zl—d(equ(x), exp (v)) < [x - y| .

Since B is compact and as equ(K (0))e M ~3M for

€

all g € B it is clear that there exists a positive

number & such that

exp_ ¢ K_,.(0) — expy (K (0)) @ MN IM

q e+6

is a diffeomorphism for all q € B. Therefore it is easily seen

that
1

d(equ(x), equ(y)) > min { 26§, J £

e at ),
if °
2 := min { min '{|(Dequ(v)) w|

equ(v) / fwl= 11/ Vg € TM,

q € B, |vq| < e}l

Thus we get for X,y 6‘{vq €™ / |vgl < e, q€ B}

d(equ(x), equ(y)) >min {26 , 2 [x-y| } >

min {28 i%%Xi ' L |x-yl1}

| v

fv

min { g ;A x-y| .

1) The number £ is positive because Dexp (v) is not singu-
lar for all Vg € T with q €B and |vq| < €.
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Therefore defining G := , F := L

21~

R
min {'E S}

the proof of Lemma A.4 is complete.
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Lemma.A.5: Let Br(qo) oM ~ 3 and assume that
Br(qo) is contained in a domain of Riemannian normal
coordinates centered at 9y Let r € Jo,r[ and
8§ €10,r-r[ be such that for all a,
ball B6(q1) is contained in_a domain of Riemannian

€ Bz(qo) the

normal coordinates centered at dq- Then there exists

numbers L,G such that the following holds:

For any 94 € Bf(qo) and unit tangent vectors v,v at
points gq,q € B;(q,)
-, D - -
|v —v[oi L |v -vl, + Gdlg,q .

Here

.|j Jdenotes the "norm" related to the normal

coordinates centered at qj € {qo' q1}.

1) Being more pedantic one could indicate using different
notations that we have here different representations
of the tangent vectors, these representations belng
related to the corresponding coordinates.
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Proof of Lemma A.5: Let

i= o] o TB= <gt+ K
¢(.,.) : equo o ex_(_)( ) {wq € zlag) / qulq 81> R (g
Here we define for every q; € Br(qo)
. -1
¢(q1,.) 12 equo o equ1(.) : Kd(q1) > Kr(qo),
ith K = {ve€T_ M v < 83,
wi 6(q1) v g /] lq il
1 1
K (q) = weT M/ |lvl =<xrl.
rUe £ 9o
Clearly i g: I lq ' I i" denote here the norms induced
1 “o

by the Riemannian metric on the related tangent spaces.

We identify Ké(qT) with Bg(q1) and Kr(qo) with

Br(qo) . Assume that cq(t) ’ cc';(t) are normalized pathswith c,(0) =q-,
- - o a -_a -
cdm—q.{q@c%@paﬂ&mwmmv—a%&)ﬁwv—§%&)ﬁL

Let us now denote with Vv, v the representations of
those tangent vectors relative to the normal coordinates
with center qq- Then

dgla,. o (t) |
M@y @ V)= g o

is the representation of Vv relative to the normal coordinates

N

with center 9, and 32¢(q1,q) is the derivative of

¢(,) relative to the fiber variable. We denote with
182¢(q1,q)| the norm of the linear map 82¢(q1, g) and
with B;Z¢(q], g) the second derivative of o¢(,) relative
to the fiber variable, :3;¢(q1, gq)}| the norm of the

bilinear map 8§¢{q1, g). Therefcre

1) Precisely, put Y := :(q1,.) : Kglay) » Kr(qo). Then ¥
is a map between twc normed vector spaces and 32¢(q1, q)

is the derivative of Yat the point g.

el

)
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l i

v - % 10= 532¢>(q],q) (v) —82¢(q],c_g) (x‘r)z

(<]

=18,0(a,@) (v = F) + (yé(q@) -e,(q@) (V)i <

o
\ 1 _ Tl _ - =
ilazcb(q] .q)ﬁlv V%] +182¢(q1,q) 8,0(q,,q) Hv !] <
[ 1
il\ezdp(q“q)!;v -3 1 + max 1822¢(q (gt (g-q)) | |a-q|
! 1 1 0<t<1] 1 T

|
v

1
%
!

1
Using that ¢(,) is a Cz-smooth mapping we can define

t
i}

max {|8,6(q ;@) / a€Rglg)., q € Brlg)}

1

2]
it

. 2
o = maxil 3 o(q )| / a€Kgla) . a; € Bzlg)}

1

By Lemma A.4 there exists a number F, such that for every

€ B_ (g) - g <F_dalg,q
q, - % I q qn1_oqq

holds for all q,q € Bg(a,) . It remains to estimate vl .
1

n
-

Recall cq(t) is a normalized path. Thus | v{q
Hence there exists a number Eo such that Eo > | v |

Thus

oH'iI

vl = Bpetans @ (vl s

Now

is a diffeomorphism for all q] € Bf(qo). Therefore there
exists

Hy s= min{{3,¢lq @ |/ Ivl =1, veE",

1

9 € Kglaq), aq € Bz (g))
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(En, | \J) the normed vector space containing Ké(q1)

Thus
o, ¢la @) (VO 2 H [V,

Hence

£
o]

bvl = "

We abbreviate

Using the just defined constants we get

: - 2 - . -
2g0lag,q) v = Tl + max [3,% (q qrt(@-a)) [ le-al, v ], <
0<t< 1

< I }V—\7]1+G d(q,q)

This proves Lomma A.5.
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