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Abstract
The cut locus C of a closed set A in the Euclidean space E is defined as the closure of the set containing all points pA

which have at least two shortest paths to A. We present a theorem stating that the complement of the cut locus i.e.
E\(C ∪ A) is the maximal open set in (E\A) where the distance function with respect to the set A is continuouslyA
differentiable. This theorem includes also the result that this distance function has a locally Lipschitz continuous
gradient on (E\A). The medial axis of a solid D in E is defined as the union of all centers of all maximal discs which fit
in this domain. We assume in the medial axis case that D is closed and that the boundary ∂D of D is a topological (not
necessarily connected) hypersurface of E. Under these assumptions we prove that the medial axis of D equals that part
of the cut locus of ∂D which is contained in D. We prove that the medial axis has the same homotopy type as its
reference solid if the solid’s boundary surface fulfills certain regularity requirements.  We also show that the medial
axis with its related distance function can be be used to reconstruct its reference solid. We prove that the cut locus of a
solid’s boundary is nowhere dense in the Euclidean space if the solid’s boundary meets certain regularity requirements.
We show that the cut locus concept offers a common frame work lucidly unifying different concepts such as Voronoi
diagrams, medial axes and equidistantial point sets. In this context we prove that the equidistantial set of two disjoint
point sets is a subset of the cut locus of the union of those two sets and that the Voronoi diagram of a discrete point set

1equals the cut locus of that point set.  We present results which imply that a non-degenerate C -smooth rational
B-spline surface patch which is free of self-intersections avoids its cut locus. This implies that for small enough offset
distances such a spline patch has regular smooth offset surfaces which are diffeomorphic to the unit sphere. Any of
those offset surfaces bounds a solid (which is homeomorphic to the unit ball) and this solid’s medial axis is equal to the
progenitor spline surface.  The spline patch can be manufactured with a ball cutter whose center moves along the
regular offset surface and where the radius of the ball cutter equals the offset distance.

Keywords : CAD, CAGD, CAM, Interrogation, Intersection, Finite Element Meshing

1 Introduction
The Medial Axis Transform in short (MAT) was introduced by Blum in [1] more than 20 years ago.  Since then, a
great deal of research has been done on the MAT, see the literature review in section 2. Initially the research
performed on the MAT has mainly been from the vantage point of understanding how it can be useful for pattern
recognition (see [2]). During the past five years the MAT concept has been employed in Computer Aided Design
and Manufacture for:

• global shape interrogation

• global shape representation

• automated meshing algorithms

Although there exists extensive literature on the MAT which discusses mainly computational methods in a variety of
practically relevant cases, basic global and even basic local aspects of the MAT concept are not sufficiently well
understood. Here, for instance, the relations between the homotopy properties of an object and the homotopy
properties of its MAT have not yet been systematically analyzed. Although it has been claimed occasionally (cf. eg.
[2]) that the medial axis of a domain bounded by a simple closed curve is simply connected, there does not seem to
exist any proof for this statement. Even in the planar case, there does not seem to exist any result discussing if the
medial axis is in general connected.  This is a severe gap because those topological relations often motivate the
relevance of the medial axis for global shape interrogation and representation.  Moreover, intuition frequently offers
no immediate clue telling what conjectures are true.  Therefore, in order to deduce correct results and construct
proper proofs one has to utilize tools of topology and global differential geometry.  Until now, the research activities
performed in the whole MAT area have mainly focussed on computational techniques, and one misses a
systematical foundational investigation of the concept as a whole.  One of the main goals of this paper is to help fill
this gap, and also to supply a systematical analysis of the above mentioned topological properties.  In our effort to
make a systematical analysis of the foundations of the MAT concept we investigate its relation to the concepts of cut
loci, equidistantial sets, and Voronoi diagrams. We show that the cut locus concept offers a common frame work
lucidly unifying different but related concepts such as Voronoi diagrams, equidistantial sets and medial axes. We
want to point out that the distance function and its differentiability properties play a crucial role for many
considerations in this paper.
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There is one aspect which makes the MAT problem particularly interesting for the research in Computer Aided
Geometric Design, namely the fact that it requires and integrates difficult intersection computations, offset
computations and distance function computations.  Therefore MAT computations are a challenging test bed for the
most fundamental tools in geometric modeling.

This paper is structured as follows. In section 2 we give a survey of previous work on the medial axis. In section 3
we present definitions, characterizations and various various local results for Cut Locus, Medial Axis, equidistantial
sets and Voronoi sets. In subsection 3.2 of section 3 we show that the cut locus avoids certain reference sets and we

1draw conclusions from this result among those that offset surfaces of a spline patch are C -smooth for sufficiently
small offset distances. In subsection 3.3 we investigate the relation of the cut locus to equidistantial sets and Voronoi
diagrams. We show that the cut locus concept offers a common framework unifying different concepts such as
Voronoi diagrams, equidistantial sets and medial axes. We show that the equidistantial set of two disjoint sets is a
subset of the cut locus of the union of those two sets. We also prove that a Voronoi diagram is the cut locus of a
discrete point set In section 4 we present global results on the medial axis. We prove in subsection 4.1 that under
appropriate assumptions for a solid’s boundary the medial axis has the homotopy type of its enclosing solid. In
subsection 4.2 we show that the medial axis can be used to reconstruct the engulfing solid.  The appendix contains
two lemmata.  The first is used as a crucial part for the homotopy result in subsection 4.2. The second describes
properties of cut locus points if the reference set is a closed surface being the union of planar facets.

2 Survey of Previous Work on the Medial Axis
The concept of the equidistantial point set with respect to two reference sets is basic for the concepts of cut locus,
medial axis and Voronoi diagrams.  The concept of the equidistantial point set is as old as geometry.  Euclid used
the concept of the equidistantial point set of two distinct points or straight lines in the plane. Apollonius defined the
parabola as the equidistantial point set of a point and a straight line in the plane.  The concept of equidistantial loci
in the context of discrete point sets goes back at least as early as the work of Voronoi [50], his name being usually
associated with the concept of a Voronoi diagram. The concept of the Cut Locus of a single point on a surface is
due to Poincare [38], which he called in French "ligne de partage".  However prior to Poincare the concept of the cut
locus of a point on a surface occurs at least implicitly in Mangoldt’s paper [27]. There has been a lot of work in
Riemannian Geometry using the cut locus of a single point in particular for the investigation of geodesics and
positively curved Riemannian manifolds, for an overview see e.g. [41], [18], [52] and the lists of references given
there. The concept of the Medial Axis Transform (which is also called symmetric axis or skeleton) appears to have
been introduced first by Blum in [1] as a method to describe and recognize biological shape, see also Blum’s
extensive article [2].

There exists a considerable body of literature on algorithms to compute the medial axis of a planar polygonal
domain or of a planar domain bounded by circular arcs and polygons see e.g. Montanari [29], Preparata [39], Lee
and Drysdale [21], Lee [22], Yap [53], Gursoy [8], Patrikalakis and Gursoy [35]. The amount of research done in
the three dimensional case is smaller.  Here we have the work of O’Rourke and Badler [33]. Motivated by work of
Blum and Nagel [3] in the planar case, Nackman was the first to derive curvature relations between the curvature of
the medial axis axis surface and the curvature of the boundary surface see Nackman [30] and Nackman and Pizer
[31]. More recently, Hoffmann [12], [13]  and  Dutta  and  Hoffmann  in [6] compute equidistantial curves and
surfaces. Nackman and Srinivasan [32] investigate bisectors of linearly separable sets.  Hoffmann and Vermeer
[14] present systems of equations defining equidistantial curves and surfaces where they eliminate extraneous
solutions in curve and surface operations.

The author introduced the concept of the cut locus for arbitrary closed sets in a Riemannian manifold with and
without boundary [52]. Motivated by his work in [51] he could show that even under those very general
assumptions and under the weak requirement of Lipschitz continuity for the Riemannian metric the cut locus can be
characterized through differentiability properties of the distance function, cf. [52]. As a special case see also theorem
2 in this paper.

During the past five years there has been an increasing interest in the medial axis area by researchers involved in
geometric modelling and computer aided design, analysis and manufacture. There are several reasons for this. First
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the medial axis appears to be useful for the extraction of gross features of a two or three dimensional solid cf. e.g.
Rosenfeld [42], Patrikalakis and Gursoy in [34] and [35]. Further the medial axis appears to be an appropriate
preprocessing tool for automated finite element mesh generation on topologically complicated two and three
dimensional domains, cf. e.g. Srinivasan, Nackman, Tang, Meshkat in [49], Gursoy [8], Gursoy and Patrikalakis in
[9]. This relevance as an appropriate preprocessing tool for topologically complicated domains is corroborated by
the observation that numerical medial axis computations of complicated two dimensional solids yield objects which
have the homotopy type of the enclosing domain e.g. the same number of holes, cf.  Srinivasan, Nackman [48] and
Gursoy [8]. Held [10] develops and applies the concept of equidistantial point sets and Medial Axes and Voronoi
diagrams in numerical control 2.5 D machining applications.  Held’s book [10] as well as the thesis by Gursoy
[8] provide extensive references in this general area and its applications.  More recent references of related interest
pertaining to the area of global shape interrogation in CAD/CAM are the following ones [16], [23], [24], [25], [26],
[37], [46], [54].

3 Definitions, Characterizations and Local Results for Cut Locus, Medial Axis,
Equidistantial Sets and Voronoi Sets

3.1 Review of some Concepts used in the Paper
To make the paper self-contained and more easily readable we review here some concepts from point set topology,
differentiable manifolds and analysis which are used very often in this paper. We don’t give the most general
definitions of the concepts, but explain only the meaning within the scope of this paper.  For more background on
point set topology see e.g.  Hu [15] or Kelley [17], for algebraic topology and differential topology see eg.  Spanier
[47], Massey [28] or Guillemin and Pollack [7], Hirsch [11] respectively.

nAn open subset G of R is characterized by the property that for every point x ∈ G there exists a positive number ε
nsuch that the disc {y ∈ R | |x − y | < ε} is contained in G. The interval (0, 1) = {s ∈ R | 0 < s < 1} is an open subset of

1R .

nA point q is a limit point of a set C ⊂ R if there exists a sequence of points x ∈ C converging to q. A set may notn
contain all its limit points eg. the point 0 is a limit point of the interval ( 0, 1 ) but 0 is not contained in (0, 1). A

nclosed subset C of R is characterized by one of the two equivalent properties:
1) The set C includes all its limit points.

n n2) The complement R \ C is an open subset of R .
1 2 1 2The sets {s ∈ R | 0 ≤ s}, {(x,y) ∈ R | 0 ≤ x, 0 ≤ y} are closed subsets of R , R , respectively.

n nA subset B ⊂ R is called  bounded  if B is contained in some finite disc {y ∈ R | |0 − y | < d} with radius d. The sets
1(0, 1 ), { s ∈ R | 0 < s } are bounded and unbounded subsets of R respectively.

nA subset K of R is compact if and only if K is closed and bounded. Hence the set {s ∈ R | 0 ≤ s ≤ 1} is compact
while both of the sets {s ∈ R | 0 ≤ s }, { s ∈ R | 0 ≤ s < 1} are not compact. Compact sets have the property that
continuous real valued functions attain a finite minimal and maximal value on them.

A subset D of S is dense in the set S if every point in S is a limit point of D. The rational numbers are a dense
subset of the real numbers because every real number can be approximated by a sequence of rational numbers.  A set

n n nA ⊂ R is nowhere dense in R if D is not dense in some n-dimensional disc { x ∈ R | |x − q | < ε}. Let the set A be a
n nsubset of R . A function f : A → R is continuous in some point q ∈ A if for any sequence of points q ∈ A with limitn

n mpoint q the sequence of function values f(q ) has the limit point f(q). Let A, B be subsets of R , R respectively. An
function f : A → B is a homeomorphism if the function f is continuous and has a continuous inverse.  Two subsets

n mA, B of R , R respectively are called  homeomorphic  or are said to have the same homeomorphy type  if there
exists a homeomorphism f : A → B.

nAn unbordered, k-dimensional topological submanifold S of R (with 0 ≤ k ≤ n) is characterized by the property that
o nfor every point q ∈ S there exists a positive number ε such that for the disc K (q, ε ) = { x ∈ R | |x − q | < ε} the
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o kintersection K (q, ε )∩S containing q ( and being a neighborhood of q in S ) is homeomorphic to R . A
k-dimensional topological submanifold S with boundary ∂S is characterized by the properties that:

o1) For every boundary point p ∈ ∂ S there exists a positive number δ such that the intersection K (p, ε )∩S containing
p (and being a neighborhood of the boundary point p in S) is homeomorphic to the k-dimensional halfspace

k kH = {(x , ... , x ) ∈ R | x ≥ 0 }.1 k 1
2) The set S\∂S is nonempty and for every every point q ∈ S\∂S there exists a positive number δ such that the

ointersection K (q, δ)∩S containing q (and being a neighborhood of the non-boundary point q in S ) is homeomorphic
kto R .

3 3 2 2The sets O = {(x , x , x ) ∈ R | |x | < 1, x = x = 0 } , O = {(x , x , x ) ∈ R | |x + x | < 1, x = 0 },1 1 2 3 1 2 3 2 1 2 3 1 2 3
3 2 2 2 3O = {(x , x , x ) ∈ R | |x + x + x | < 1 } are one-, two-, three- dimensional submanifolds of R respectively,3 1 2 3 1 2 3

3and all three of those submanifolds have no boundary. The sets B = {(x , x , x ) ∈ R | |x | ≤ 1, x = x = 0 },1 1 2 3 1 2 3
3 2 2 3 2 2 2B = {(x , x , x ) ∈ R | |x + x | ≤ 1, x = 0 }, B = {(x , x , x ) ∈ R | |x + x + x | ≤ 1 } define bordered2 1 2 3 1 2 3 3 1 2 3 1 2 3

1 3one-, two- and three dimensional submanifolds of R respectively. Their boundaries are
3 3 2 2∂B = {(x , 0, 0 ) ∈ R | |x | =1 }, ∂B = {(x , x , 0 ) ∈ R | |x + x | =1 },1 1 1 2 1 2 1 2

3 2 2 2 3∂B = {(x , x , x ) ∈ R | |x + x + x | =1 } where ∂B , ∂B represent a unit circle and a unit sphere in R3 1 2 3 1 2 3 2 3
respectively.

n mLet A be any subset of R . Any function f : A → R is Lipschitz continuous  on A with some Lipschitz constant L if
for all points x,y ∈ A we have | f(x) − f(y) | ≤ L |x − y |. It is easily seen that a Lipschitz continuous function is
continuous in all points of its domain of definition. However a continuous function need not be Lipschitz

0continuous, an example being the function f(x) = +√x defined on the interval [0, 1] = {0 ≤ x ≤ 1}. All C -smooth
rational B-spline functions are Lipschitz continuous.  A function f is locally Lipschitz continuous on a domain D if

ofor every point p ∈ D there exists a number ε such that the function f is Lipschitz continuous on D∩K (p, ε ).

kThe notation C - smooth will refer to functions which have continuous partial derivatives of order k. The notation
k,1C - smooth will refer to functions which have Lipschitz continuous derivatives of order k. The function f : R → R

2 1,1 2defined by f(x) = 0 for x ≤ 0 and f(x) = x for x ≥ 0 is C -smooth but not C smooth. All rational B-spline functions
k-1(with simple knots) of degree k in each parameter are C -smooth.

r n nA k-dimensional, C -smooth submanifold S of R is a k-dimensional, topological submanifold of R with the
nproperty that for every point p ∈ R there exists a positive number ε such that:

k oThere exists a homeomorphism h : D = {x ∈ R | |0 − x | < 1 } → S∩K (p, ε ) with p ∈ h(D); the map h has
′continuous partial derivatives of k -th order on D and the Jacobian matrix h (x) has rank k every where on D .

r nAny C -smooth k-dimensional submanifold S of R can be locally represented by solutions of (n-k) (generally1
rnon-linear) equations described by n−k C -smooth functions. This means for every point x ∈ S there exists an open1

n r n−k −1set U in R and a C -smooth function e : U → R whose differential has rank n−k on all U and x ∈ U∩S = e (0).1
n rUsing the implicit function theorem (cf. e.g. [5] ) it is easily seen that for any open set U ⊂ R and for any C -smooth

n−k ′ −1function e : U → R whose Jacobian e has rank n − k on all U the preimage set e (0) defines a n − k dimensional
r nC -smooth submanifold of R .

nWe also need to explain smooth functions defined on submanifolds which are not open subsets of R . For this let S 1
k n w rbe any C -smooth m-dimensional submanifold of R . A continuous map f : S → R is C -smooth if for every point1

kx ∈ S there exists a positive number ε and and a C -smooth homeomorphisms h : K(0, 1) → K(x,ε)∩S ,1 1
′ wx ∈ K(x,ε)∩S with the Jacobian h (z) of rank w on all K(0,1) such that the composition map f o h : K(0, 1) → R is1

r −1C -smooth on all K(0,1). The differential of map f has rank w at x if at the preimage point z = h (z) the Jacobian
′ k n r(f o h) (z) has rank w. Let S be any C - smooth m-dimensional submanifold of R and let S be any C - smooth1 2

d rm-dimensional submanifold of R then a map f : S → S is a  C -smooth diffeomorphism  if f is a homeomorphism1 2
−1 rand if the map f as well as its inverse f are both C -smooth. These conditions are already fulfilled if the map f is a

1We are using the terminology  bordered manifold as a synonym to manifold with boundary.
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r n mC -smooth homeomorphism whose differential has rank m on all S . Two smooth submanifolds S , S of R , R1 1 2
r rrespectively are C - diffeomorphic if there exists a C -smooth diffeomorphism f : S → S . The mappings1 2

3 ∞ψ(x,0,1) = (x , 1 ) , φ(x,0,1) = (x, 1 ) define homeomorphisms between the two C -smooth submanifolds
3 2 3 2 ∞S = {(x,0,1) ∈ R | x ∈ R}, S = {(x,1) ∈ R | x ∈ R} of R , R respectively; here the map φ is a C -smooth1 2

1 −1diffeomorphism, while ψ is not even a C -smooth diffeomorphism. Note that the inverse ψ is continuous but not
′ 1locally Lipschitz continuous, due to the fact that the Jacobian ψ (0,0) = 0 . Let S denote the unit circle being a

∞ 2 2 1 1C -smooth submanifold of R . Let r(x,y),γ(x,y) be polar coordinates in R . The map β : S → S with
∞ 1β(x,y) = (cos(2 γ(x,y) ), sin( 2γ(x,y) ) ) is C -smooth and its Jacobian has maximal rank on all S . This map β is locally

2 1invertible this means here that a mapping defined by restriction of β to any sufficiently small subarcs S yields a
diffeomorphism onto the image set of the small subarc.  However β has not the global property to be a

2 2 2homeomorphism. Let S = {(x,0) ∈ R | x ∈ R }, S = {(x, f(x) ) ∈ R | f(x) = 0 for x ≤ 0, f(x) = x for x ≥ 0 }. The3 4
1 2map Ω(x) : S → S provides a C -smooth diffeomorphism between both submanifolds of R . However both3 4

2 2submanifolds are not C -diffeomorphic submanifolds of R . Note also that the fact that a submanifold is
diffeomorphic to some other submanifold does not say much on how complicated any of those submanifolds has

3 3been embedded in a Euclidean space. For instance a knotted curve K in R is a submanifold of R diffeomorphic to
3 3the unit circle in R , however the curve K may be embedded in a complicated way into the ambient space R . Note

nin this context that a diffeomorphism (or homeomorphism) between two submanifolds S , S of R need not be1 2
nextendable to a diffeomorphism (or homeomorphism) of R to itself. An example for this situation is provided by a

3 3closed knotted curve K in R . The curve K is diffeomorphic to the unit circle in R , however no homeomorphisms
3 3between K and the unit circle in R can be extended to a homeomorphism of R to itself, see e.g. Hirsch [11].

2We shall use also one-dimensional piecewise smooth submanifolds of the Euclidean plane R . A piecewise possibly
k 2disconnected one-dimensional C −smooth submanifold S is a topological submanifold of R with the subsequent

additional property:
3 oFor every point p ∈ S there exists a positive number ε and a homeomorphism h(t) : (−1, 0]∪ [0, 1) → S∩K (p, ε )

2 2 ksuch that p ∈ h( (−1, 0]∪ [0, 1) ) and each of the functions h : (−1, 0 ] → R , h : (0, 1 ] → R , is C -smooth and has
non-zero first derivative on its respective domain of definition (−1, 0 ], [0, 1).
Note that, the two paths h( (−1, 0] ), h( [0, 1) ) will generally not have collinear tangents at the  vertex  point h(0).

∞Polygons which are free of self-intersections can be used to get one-dimensional piecewise C -smooth submanifolds
2of R . Another example covered by the definition is given by the union of the two subsequent paths

2 2 2{(t, t ) ∈ R | 0 ≤ t < ∞ } , {(t, 0 ) ∈ R | 0 ≤ t < ∞ } .

3.2 Definitions, Characterizations and Local Properties of the Cut Locus and the Medial Axis
The MAT of a closed planar region B bounded by a curve has been defined by Blum to be the union of the centers
of all maximal discs (which fit inside B) together with the radius function, defining the radius of a maximal disc for
a point in M(B).  Therefore, in the sense of Blum

Definition of the MAT: The MAT of a planar region B is a real valued function

r: M(B) → R

together with its domain of definition M(B); the set M(B) ⊂ B is called the medial axis or symmetric axis or skeleton
of B. A point p ∈ B is contained in M(B) if and only if there exists a closed disc

K(p,r(p))

with center p and radius r(p), which is not contained in a larger disc W with

K(p,r(p)) ⊂ W ⊂ B .

Blum defined the MAT concept initially for a domain in the Euclidean plane. We will generally assume that the set

2A subarc of length smaller than π is sufficiently short.

3We shall often use the notation (−1, 0], [0,1) for the intervals { s ∈ R | −1 < s ≤ 0 }, { s ∈ R | 0 ≤ s < 1} respectively.



6

B is a bordered n-dimensional submanifold of the n-dimensional Euclidean space. For some of the results in this
2paper we need to make specific continuity requirement for the boundary ∂B like e.g. being a piecewise C -manifold.

Redefinition of the MAT: Note that we extend Blum’s MAT definition in the following way:

• We include in the medial axis M(B) also all limit points of all centers of all maximal discs.

• We redefine the preceding function r : M( B ) → R by r(p) = d(p, ∂B ) i.e. r(p) is the distance of the the point p to
the boundary ∂B.

This yields a well-posed definition of the function r(p) also in case the point p is a limit point of centers of maximal
discs in B. This redefinition yields a continuous function r : M( B ) → R and Lemma 2 below will prove that this
redefinition of r(p) is consistent with the preceding one.  Namely this holds by Lemma 2 because if a point p is a center
of a maximal disc K in B then the radius of K equals the distance of p to the boundary ∂B.

We explain now why the redefinition of the function r : M( B ) → R is important. For this note that in case the
1,1boundary ∂B is only a C -smooth manifold then a limit point p of centers of maximal discs need not be a center ofo

a maximal disc in B. Hence for such a limit point p the function value r(p ) cannot be defined as the radius of theo o
maximal disc in B with center p as p need not be center of a maximal disc. However we need to assign a value too o
r(p ) if we want to include limit points into the medial axis transform concept.o

1,1Example 1: We explain now an example of a planar domain with C − smooth boundary where a limit point of
maximal disc centers is not a center of a maximal disc in the domain.  For this purpose we define the function

4f : R → R by f(x) = (1/2) x sin(2/x) if x ≥ 0 and f(x) = 0 for x ≤ 0. The domain B is defined by all points above the
2 1,1graph of the function f(x) i.e.  the set B = {(x,y) ∈ R | y ≥ f(x) }. The function f(x) is C -smooth. For x > 0 the first

′ 3 2and second derivative of f(x) are given by f (x) = 2x sin(2/x) − x cos(2/x) and
′′ 2f (x) = 6x sin(2/x) − 4x cos(2/x) − 2 sin(2/x) respectively. The function f(x) has infinitely many local minima on

each interval between 0 and any positive number.  Let x be such a minimum. Let Ra be a ray which starts atm
(x , f(x ) ). We assume that Ra is parallel to the y-axis and that Ra points into the domain B. The ray Ra contains am m
curvature center c which is located arbitrarily close to the axis {(x, y) |y = 1/2 } if x is sufficiently small; the pointm m
c is a curvature center respective the point (x , f(x ) ) on the curve x → (x, f(x) ). It can be shown that thosem m m
curvature centers c are centers of maximal discs respective the domain B. This claim can be verified by elementarym

4estimations .- With x converging to 0 the corresponding sequence of maximal disc centers has a limit point l on them
y-axis precisely l = (0, 1/2 ) . This point l cannot be a center of a maximal disc in B because the (candidate) disc
K( l, 0.5 ) (with center l and radius 0.5 ) is subset of the larger disc K( (0, 1), 1 ) (with center (0,1) and radius 1 )
which is easily shown to be contained in B. The claim that the disc K( (0, 1), 1 ) is subset of B follows from the
subsequent inequalities which can be easily verified:

2 2 4For 0 ≤ x ≤ 1 is 1 − √ ≥1 − x (1/2) x ≥ (1/2) x sin(1/x) (1)

Similarly if K( (0, 1), 1 ) is subset of B then no point in { (0, y ) | 0 ≤ y < 1} can be center of a maximal disc in B.
2 1,1Therefore the two-dimensional bordered submanifold B ⊂ R (with ∂B being C −smooth) contains centers of

maximal discs with some limit point not being center of a maximal disc in B. This establishes the properties
claimed for our example. Note that if one would modify the example 1 by replacing sin(2/x) with sin(δ/x) in the

2definition of f(x) then the curvature radius would approach the value (1/2) δ and the limit of centers of maximal
2discs would be located at the point p = ( 0 , 1/2 δ ). Like in the unmodified example this point p would not be center

of a maximal disc. This modified example allows to place the point p arbitrarily close to the boundary of the planar
2domain namely within a predifined arbitrarily small distance (1/2) δ .

As we shall see later in theorem 1, the medial axis is a special subset of the cut locus concept studied in [52].
Therefore, we can successfully apply results from [52] in this context.  For this we introduce the following notation:

4Note that the ray Ra cannot be a distance minimal path to ∂B after the ray has passed through c . Therefore the segment seg of Ra boundedm
by the two points c , (x , f(x ) ) must contain a non-extender point explained in the definition below.  By lemma 1 below, a non-extender is am m m
center of a maximal disc.  Therefore the segment seg contains a center of a maximal disc.  Those centers of maximal discs must have some limit
point on the y-axis between the two values 0, 0.5 .
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nDefinition: A point p ∈ R is called non-extender relative to the closed set A, if there exists a minimal join from A
to p which cannot be extended as a minimal join beyond p.

1 1 2Example: The midpoint of the unit circle S is a non-extender relative to S in the Euclidean plane R .

Using a simple estimation employing the triangle inequality it is easily seen that the preceding definition of a
non-extender point yields immediately the subsequent corollary.

n nCorollary 1: If a point q ∈ R is a non-extender with respect to some closed set A ⊂ R then no minimal join from A
to q can be extended distance minimally beyond q.

Using the concept of non-extender points we define next the cut locus with respect to a reference set.
nDefinition : The cut locus C of a closed set A ⊂ R is then defined as the set of all non-extenders relative to AA

together with all limit points.

We want to give a result which relates the cut locus with the medial axis.  For this purpose, we need to explain for
nwhat kind of sets B in R we want to define the medial axis. Note while we have defined the reference set A for the

5cut locus to be very general namely any closed set we shall be more restrictive for the reference set B of the medial
axis. Unless stated otherwise, let us from now on assume that B is always a closed bordered n-dimensional

ntopological submanifold of R assume that the non-empty boundary ∂B of B is a n−1-dimensional topological
manifold.

The preceding conditions imply
nProposition 1: The boundary ∂B separates B and its complement R \ B. This means if we join any point p ∈ B with

n nany point q ∈ (R \ B) by a continuous path c(t) : [0,1] → R

where c(0) = p, c(1) = q, then there exists a t ∈ [0.1] such that c(t ) ∈ ∂ B.o o

Proof of Proposition 1 : We argue by contradiction. Therefore we assume that the whole path c[0,1] does not meet
n nthe boundary ∂B. Hence c[0,1] is contained in R \∂B. Thus c[0,1] ⊂ (B\∂B)∪ (R \B). Therefore the interval [0, 1] is

−1 −1 n nrepresented by the subsequent union of two preimage sets c (B\∂B)∪ c (R \B) . As (B\∂B), (R \B) are both open
n −1 −1 nsets in R their preimage sets c (B\∂B), c (R \B) are open sets as well because the map c(t) is continuous. Clearly

−1 −1 n nthose two preimage sets are also disjoint i.e. c (B\∂B)∩c (R \B) = ∅ because (B\∂B)∩(R \B) = ∅ . The two
−1 −1 npreimage sets are both non-empty because 0 ∈ c (B\∂B) and 1 ∈ c (R \B) as by assumption c(0) ∈ (B\∂B) and

nc(1) ∈ (R \B). This means that the interval [0,1] can be represented by the union of two open, disjoint, non-empty
−1 −1 nsets c (B\∂B), c (R \B) . This implies that the interval [0,1] is disconnected (cf. eg. [15]), a contradiction. This

proves proposition 1.

Under the above stated assumptions for B, we can conveniently characterize the medial axis as a subset of the cut
locus. Namely we have:

Theorem 1: (Medial Axis as Interior Cut Locus of a Solid’s Boundary)
Let B be a closed bordered n-dimensional topological manifold of the n-dimensional Euclidean space and
assume that ∂B is a topological n−1-dimensional manifold.  Then the medial axis M(B) equals the subset
of the cut locus C which is contained in B, i.e.  M(B) = C ∩ B.∂B ∂B

In other words, the medial axis of a solid B is that subset of the solid’s boundary cut locus which is contained in the
solid. Theorem 1 is a consequence of the combination of the subsequent Lemmata 1 and 2.

Lemma 1: (A non-extender is a center of a maximal disc )

5A closed set may be completely disconnected and may have many components being isolated points, isolated curves and surface pieces.
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nIf ∂B is a topological n−1-dimensional manifold being boundary of a closed solid body B in R then a point q ∈ B
being a non-extender respective ∂B is a center of a maximal disc contained in B.

Proof of Lemma 1 : There exists a minimal join s from ∂B to q.  This segment s is distance minimal from the1 1
boundary ∂B to q and s and joins some boundary point p ∈ ∂ B with q. Thus,1 1

d( q, ∂B ) = d( q, p ) (2)1

By assumption of the lemma 1 s cannot be extended distance minimally beyond q.  We claim that1

the disc K(q, d(p ,q)) is a maximal disc contained in B. (3)1

In order to show (3) we first prove

K( q, d( p , q ) ) ⊂ B (4)1

nIn order to prove (4) we argue by contradiction. Namely assume K(q,d(p ,q)) contains a point w ∈ R \ B . Join q1
with w by an arc-length parametrized Euclidean segment c(t) with c(0)=q, c(d(q,w))=w. By proposition 1 the

nsegment c(t) necessarily meets the boundary ∂B in a point c( t ). The point c( t ) ≠ c( d( q, w) ) = w as w ∈ R \ B iso o
not on the boundary ∂B. Therefore

d( q, ∂B ) ≤ d( q, c( t ) ) < d( q, w ) ≤ d( q, p ) (5)o 1

a contradiction with (2). This proves (4).  The next claim we want to establish is that:

K(q,d(p ,q)) is a maximal disc contained in B. (6)1

To prove (6) we have to show that:

K( q, d(p ,q) ) is not contained in any disc1
−K( q , r ) ⊂ B (7)

with r > d(p ,q).1

To prove (7) we argue by contradiction. Namely assume that (7) is not true. Then there would exist a disc

−K( q, r) ⊂ B with r > d( p , q )1
−and K( q, d( p , q) ) ⊂ K( q, r) (8)1

We show now first that in this case

−r = d( q, p ) (9)1

− − −Clearly r ≥ d( q, p ) because otherwise (i.e. if r < d( q, p ) ) the point p would not be contained in K( q , r) and this1 1 1
would yield a contradiction with the assumption

−K( q, d( p , q) ) ⊂ K( q , r) .1

made in (8). Therefore in order to establish (9) it remains to show

−r ≤ d( q, p ) (10)1

In order to show (10) we need the subsequent assertion:
nAny arbitrarily small disc K(p ,ε)contains points of R \ B (11)1

The claim (11) holds because p is in ∂B. To make the latter reasoning for (11) formally precise we derive now a1
contradiction from the negation of (11) which will prove (11).  For this note if K( p , ε ) ⊂ B then1

o n oK ( p , ε/2 ) = { x ∈ R | |x − p | < ε/2 } would be a neighbourhood around p in B. Now K ( p , ε/2 ) is1 1 1 1
n n 1 n 1 6homeomorphic to R and not homeomorphic to the halfspace H = { (x ,...,x ) / x ≥ 0 } . However ( if B is a

6 n nIt is a well known result from algebraic topology that R and H are not homeomorphic, see e.g. [45], [47]
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bordered manifold then ) a boundary point p ∈ ∂ B cannot have a neighbourhood U ⊂ B with U being1
nhomeomorphic to R . This yields a rigorous argument for (11).

−Using (11) it is now easy to establish (10). Namely assuming r > d( q, p ) we conclude that there exists a positive1
number ε such that:

−K( p , ε ) ⊂ K( q, r ) (12)1

− −nThus, by (11) K(q, r ) must contain points of R \ B a contradiction with the assumption K( q, r) ⊂ B in (8). This
shows (10) and completes the argument for (9).

-After this intermediate step we proceed now with the proof of (7).  Denote with S(q ), S(q) the spheres being the
-boundaries of the discs K(q,r), K(q,d(p ,q)) respectively.1

- −Assume now that the center q of K( q, r ) is not contained in the extension of the ray z which starts at p and passes1
-7through q. Then the two spheres S(q), S(q ) either intersect transversally at p or they have only the point p in1 1

−common. In both cases there exist points on S( q ) ⊂ K( q, d( p , q) ) which are not in K(q, r ) , hence a contradiction1
− -with the assumption K( q, d( p , q) ) ⊂ K( q , r) in (8). Therefore q must be contained in z. Let the ray z be1

− − − −parameterized by arc length z(t) with z(0)=p . There must exist a number t such that z(t ) = q . Clearly t = r . We1
want to prove that

−t = d(p , q ) (13)1

− −Now if t < d(p , q ) then K( q, r ) could not include all points of K(q,d(p ,q)) a contradiction with (8). Therefore1 1
−t ≥ d(p , q ). Thus, it remains to exclude the possibility that1

−t > d(p , q ) (14)1

For this we argue again by contradiction and we assume that (14) is true, hence there exists a positive number δ such
that

−t = d(p , q ) + δ . (15)1

− −Now K( z(t ), r) = K( q, r ) ⊂ B. Therefore with considerations similar to the one proving (11) above we find that the
open disc

o nK (z(d(p , q ) + δ), r ) = { x ∈ R / |x − z(d(p , q ) + δ) | < d(p , q ) + δ}1 1 1

contains no points of the boundary ∂B. Thus

d( ∂B,z(d(p , q ) + δ) ) ≥ d(p , q ) + δ (16)1 1

−Therefore the segment z− = { z(t) / 0 ≤ t ≤ d(p , q ) + δ} is distance minimal from q = z(d(p , q ) + δ ) to the boundaryq 1 1
∂B. This segment z- contains q = z(d(p , q ) ) as an interior point.  Thus the minimal joinq 1
s = { z(t) / 0 ≤ t ≤ d(p , q ) } going from from ∂B to q can be extended as a minimal join beyond q.  This is aq 1
contradiction with the assumption stated in lemma 1 that q is a nonextender with respect to the boundary ∂B.
Therefore it disproves (8) and shows (7). This proves (6) and completes the proof of lemma 1.

nLemma 2: Let B be a closed solid body in R with boundary ∂B a topological (n-1) dimensional manifold.  Let
K(q,r), r > 0 be a maximal disc contained in B. Then the center q of this disc is a non-extender respective ∂B and the
radius r = d(q, ∂B ).

Proof of Lemma 2 : The proof is performed in two steps.  In the first step we prove that there exist boundary points
nearest to q and that all those points are located on the boundary of the disc K(q,r), i.e. they all have distance r to q.
Therefore in the first part of the proof of step 1 we show that:

7The ray z is an extension of the interior normal of the sphere S(q).
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There exists a point p ∈ ∂ B with d( q, p) = d( q, ∂B). (17)

The second claim in step 1 can be rephrased by the conclusion:

If q ∈ ∂ B with d( p, q) = d( p, ∂B) then d(p, q ) = r (18)

In the second step of the proof of lemma 2 we shall show that the assumption q being an extender respective ∂B can
be used to disprove the maximality condition in lemma 2. In other words we show if q is an extender respective ∂B
then we can find a disc D contained in B where D contains also K(q,r) as a proper subset.  Thus, step 2 will establish
lemma 2.

We show now the claims of step 1.  The distance function x → d( q, x ) is continuous and the boundary ∂B is
compact. Therefore the distance function attains its minimum in some boundary point p ∈ ∂ B . This proves (17).
We show now (18).  For this we first prove that

d( p, q ) ≥ r (19)
o nAssume the contrary of (19) then there exists a point of ∂B in K (q,r) = { y ∈ R / |y − q | < r }. This implies using the

n oargument for the proof of (11) that there exist points of R \ B in K (q,r). This yields a contradiction with the
assumption of the lemma that K(q, r ) ⊂ B . This shows (19).  Next we prove

d( p, q ) ≤ r (20)

For this assume d( p, q ) > r ; then there exists a positive number ε such that K(q,r+ ε) contains no points of ∂B.
This implies that

nK(q,r+ ε) contains no point e ∈ R \ B (21)
nbecause otherwise by Proposition 1 the Euclidean segment joining q ∈ B with e ∈ R \ B would meet ∂B in K(q,r+

ε). This would yield a contradiction with the preceding statement that K(q,r+ ε) contains no points of ∂B. This shows
(21). Now (21) implies that K(q,r+ ε) is contained in B. This is a contradiction with the assumption of the lemma
that K(q,r) is a maximal disc contained B. Thus we disproved d( p, q ) > r and have shown (20). This completes the
proof of (18) and establishes the claims contained in the first part of the lemma’s proof.

We give now the argument for the second step of the lemma’s proof.  For this let c(t) be an arc length parametrized
Euclidean ray which starts at the boundary point p described by (17) and passes through q, hence c(0)=p and c(r)=q.
It follows from (18) that the segment c([0,r]) is a distance minimal join from ∂B to the point q.  Assume now that q
is an extender with respect to ∂B. Then there exists a positive number δ such that c([0,r+ δ) is a distance minimal
join to ∂B. This implies obviously that

o o nD = K ( c(r+δ) , r + δ) = { y ∈ R / |c(r+δ) − y | < r + δ }
contains no points of ∂B (22)

for otherwise c([0,r+ δ]) could not be distance minimal to ∂B. Using the argument which proved (21) together with
(22) one finds that

nD = K( c(r+δ) , r + δ) contains no points of R \ B (23)
nNote if D would contain a point w of R \ B then an arc-length parametrized segment g joining c(t+δ) with w would

nmeet ∂B in an interior point x of g because x ≠ w as x is not in R \ B. Since the boundary point x is an interior point
oof g this point x must be in D a contradiction with (22). This consideration yields a formally complete argument for

(23). Therefore D is contained in B. Also D obviously contains K(q,r). This yields a contradiction with the lemma’s
assumption that K(q,r) is a maximal disc contained in B and completes the proof of lemma 2.

Remark : Analyzing the preceding proof one finds that the key properties used in the arguments are :
n• that the boundary ∂B separates the interior of the solid B from its complement R \ B;

• subsets of the boundary ∂B which are contained in any closed bounded disc are compact.

We used in our lemmata 1 and 2 that Both of those itemized properties will hold not only if B is compact but also in
ncase the solid B is a unbounded, closed, bordered n-dimensional submanifold of R , with the boundary ∂B being an

n−1-dimensional topological manifold which may even have infinitely many unbounded components.
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Based on these considerations one can obviously define the concept of an exterior medial axis with respect to the
nsolid B as the centers of all maximal discs which are contained in (R \ B)∪∂ B. Analogue to theorem 1 this exterior

nmedial axis can now be characterized also as that subset of the cut locus C which is contained in (R \ B)∪∂ B.∂B

Next we give a series of results which explain mainly local properties (or the local nature) of the points in the cut
locus (which agrees in B with the medial M(B) by Theorem 1).  To simplify some of the statements in the results
below, we introduce a name (notation) for a specific non-extender called pica.

Definition : A pica q with respect to a closed set A is a point which has at least two nearest neighbors on A, see
Wolter [52].

The proofs of results in this paragraph as well as the proof of our global topological shape theorem in the next
section makes use of the subsequent Theorem 2 which holds under very weak general assumptions.  We state now a
simplified (weakened) version of this result in [52]. In this version, we require the set A to be a closed, possibly

ndisconnected, subset of R . Under these assumptions, we have:
nTheorem 2: (Characterization of the Cut Locus of a Closed Set A in R )

• A) The picas with respect to A are dense in C . Hence the cut locus C consists of those pointsA A
and their limit points.

n n• A’) R \ C is in R the maximal open set of points, which have a unique minimal join to A.A
n n• B) The complement of the cut locus C , i.e. precisely R \(A ∪ C ) is the maximal open set in RA A

8 1\ (A ∪ C ) where the distance function d(A, . ) is C -smooth, and its gradient ∇ d(A, . ) is locallyA
n nLipschitz continuous on R \(A ∪ C ). At any point q ∈ R \(A∪ C ) the gradient ∇ d(A,q) equalsA A

the unit direction vector of the minimal join from the set A to q.

In order to illuminate the preceding statement A’) we mention here:

Remark: That there exists always a unique minimal join from every point p ∈ A to C does not hold in general ifA
2 n 1A is only a piecewise C -smooth submanifold of R . It holds however if A is a regular C -smooth submanifold of

n 2R . To illuminate the statement in the piecewise C -smooth case take a planar polygonal domain then it easy to
construct examples where a concave vertex has more than one minimal join to the cut locus of the boundary
polygon.

The next result describes local properties of points in the cut locus and also local aspects of its topological structure:

Theorem 3: Local Properties of Points in the Cut Locus  Let A be a closed n−1-dimensional submanifold
n 2of R . In case n > 2 we assume the manifold A to be C -smooth. If n = 2 we only require A to be piecewise

2C -smooth. Under those assumptions the following statements hold

• A) A limit point of non-extenders with respect to A is a non-extender with respect to A. All points
in the cut locus C are non-extenders respective the set A.A

• B) In the piecewise linear boundary case, all non-extenders are picas. A limit of picas is here a
9pica .

2• C) In the C -smooth boundary case, if a non-extender is not a pica, then it is a curvature center of
the boundary A it may be both, e.g.  the center of a circle.

n• D) The set C is nowhere dense in R .A

Proof of Theorem 3: The parts A), B), C) of theorem 3 are are shown in lemma A.1 contained in the appendix of

8d(A,.) being the Euclidean distance function with respect to the closed set A.The point "." in the expression d(A,.) is a place holder for the
variable of this function. Evaluating the function d(A,.) for a specific variable value ie. for a specific point p yields d(A,p) which is the distance of
the point p to the set A.

9If this limit is on A we have a degenerate case, which we allow.



12

this paper. It remains to prove part D).

nProof of Theorem 3 D) : Assume that the set C were some where dense in R . Then C being defined as a closedA A
nset would contain some solid n-dimensional disc K(q, r ) = { x ∈ R | |x − q | ≤ r }, r > 0. Obviously A being an

nn−1-dimensional submanifold of R cannot be dense in any n-dimensional disc. Therefore, we can find some
nn-dimensional disc K(p, w) = { x ∈ R | |x − p | ≤ w }, r > w > 0 with K(p, w ) ⊂ K(q, r) such that

K( p, r )∩A = ∅ (24)

There must exist a distance minimal segment g( t ) from the set A to the point p. Let g( t ) be arc-length
parameterized and assume that g( d(A, p ) ) = p with d(A, p ) being the distance of the point p to the set A. Then the
point g( d(A, p ) − w/2 ) being contained in K( p, w ) ⊂ C must be a non-extender by theorem 3 A). This yields aA
contradiction with corollary 1 because the path g( t ) is distance minimal beyond g( d( A, p ) − w/2 ) up to the point p.
This proves theorem 3 D) and completes the proof of theorem 3.

In order to illuminate the subtleties in the preceding theorem 3, we want to point out:
1Remark: If we require the boundary ∂B above to be only C -smooth manifold (even with Lipschitz-continuous

derivatives), then a limit of picas may be an extender. Thus here a limit of non-extenders may be an extender, cf. also
example 1; moreover, here the picas (with respect to ∂B) may be dense in some open subregions of B, thus here the cut
locus and hence the medial axis M(B) will be dense in some open sub-area of B. Note that also if dimension n > 2 and
if the boundary ∂B is piecewise linear then statements A) and B) in theorem 3 are violated because a limit of picas may

∞be a nonextender in this case, cf. also lemma A.2 in the appendix.  In the general C -smooth boundary case, e.g. in the
plane with ∂B being a simple closed curve, the medial axis M(B) may have infinitely many end points which are caused
by infinitely many curvature centers of ∂B; hence here M(B) may not be the union of finitely many arc pieces.

3.3 The Cut Locus Avoids Certain Reference Sets
There exists one important result which holds under very weak regularity assumptions. This result says that the cut
locus stays away at least a certain positive distance from a set if that set fulfills certain regularity requirements. This

1result implies that the cut locus stays away at least a certain positive distance from a C -smooth rational spline patch
defined over a rectangular domain. This holds if the surface patch is free of self-intersections and if the surface map
has a Jacobian of rank 2 at all points. We shall actually prove a more general result which includes spline patches as
a special case.

3Theorem 4: Cut Locus avoids certain reference surface patches.  Let q(s,t) : D = [0,1] × [0,1] → R be a
1regular C - smooth surface S which is free of self-intersections.  Regular means that the Jacobian

′q = ( ∂ q, ∂ q ) has rank 2 everywhere. We assume further that the partial derivatives of q(s,t) are Lipschitzs t
continuous. Under those assumptions there exists a positive number λ such that the cut locus C staysS
away farther than distance λ from the surface S.

2Note the requirement that the partial derivatives of q(s,t) are Lipschitz continuous is weaker than C smoothness and
1it is already fulfilled if the surface is a C -smooth rational B-spline patch.

Remark: The requirement of Lipschitz continuity of the first partial derivatives can not be left out in theorem 4, it
follows from [52], p. 65.  that this Lipschitz continuity is also a necessary condition to prevent the cut locus from

1coming arbitrarily close to the surface S. It is easy to construct non-degenerate C -smooth planar curves which have
their cut locus coming arbitrarily close. Namely define a planar curve { (x(t), y(t) ) / −1 ≤ t ≤ 1 } by x(t) = t and

3/2 1y(t) = 0 if t ≤ 0 otherwise y(t) = t . This yields a non-degenerate C -smooth curve which has infinitely large curvature
at ( x( 0 ), y( 0 ) ) = (0, 0) and the cut locus of this curve approaches (and contains) the curve point (0,0).

We give now a proof of theorem 4.  For this purpose we shall need the following

nLemma 3: Let D be a compact, convex set in R and assume that D is n-dimensional i.e. D contains an n-
n+m 1dimensional disc.  Let m be any positive integer number and assume that the function f(x) : D → R is C - smooth

′ ′and regular i.e. | f (x) h | ≠ 0 if h ≠ 0. We assume further that the Jacobian f (x) is Lipschitz continuous in the
variable x. Under these assumptions there exist two positive numbers r , h such that for any unit vector N(x)o o
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| f ( x + h ) − f(x) − r N(x) | > |r | (25)

′for all r with 0 < |r | < r if |h | < h and if f (x) h is orthogonal on the unit vector N(x).o o

Proof of Lemma 3: In this proof we shall use a first order Taylor development of f(x+h) with a Lipschitz
′continuous remainder term.  Namely representing f(x+h) by approximation with its Jacobian f (x) we get

′f(x+h) = f(x) + f (x) (h) + R(x,h)|h | (26)

′ ′where R(x,h)|h | is a remainder term and f (x)(h) means that the linear map f (x) is applied on the vector h c.f. e.g.
Dieudonne [5].

We show next the Lipschitz continuity of the remainder term R(x,h) precisely we shall estimate the norm of R(x,h)
by a product built by the norm of h multiplied with a constant number M, where M is independent of x.  For this

′observe the Lipschitz continuity of the differential f (x) in the variable x means that there exists a number M such
that

′ ′| f (x + h) − f (x) | ≤ M |h | (27)

if (x+h),x are points in D.

If the points x, (x+h) are in D then using (26) and (27) the remainder term fulfills

′| f(x + h) − f(x) − f (x) (h) |
|R(x, h ) | =

|h |

′ ′| f(x+h) − f (x)(h) − f(x + 0) − f (x)( 0 ) |
=

|h |

1
≤ |ψsup (s) | (28)

|h |0 ≤ s ≤ 1

′ ′≤ |sup f (x + sh) − f (x) | (29)
0 ≤ s ≤ 1

≤ M|h | (30)

if we define
′ψ( s ) = f( x + sh ) − f (x)( sh ) (31)

then (28) follows from a generalized mean value theorem see Dieudonne [5] as (31) implies
′ ′ ′ψ (s) = f ( x + sh ) (h) − f (x)( h ) (32)

Now (32) implies
′ ′ ′| ψ (s) | ≤ |f (x + sh) − f (x) | |h | (33)

and (33) yields (29) and (27) yields (30). In summary the remainder term for the first order Taylor development of
the function f(x) fulfills

|R( x, h ) | ≤ M |h | (34)

where the number M is independent of the point x in D.

We proceed now with the proof of lemma 3. For this inserting a first order Taylor development for f(x+h) yields
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′| f(x + h) − f(x) − r N(x) | = |f(x) + f (x)(h) + R(x,h)|h | − f(x) − r N(x) |

′≥ |f (x) (h) − r N( x ) | − |R(x,h) | |h |

2 2 2 2≥ √ −e |h | + r M|h | = : A (35)

where

′e = : min { | f (x) (h) | / x ∈ D,|h | =1 }
10 ′note to get (35) we use (34) and we exploit that (by assumption of the lemma 3) f (x)(h) is orthogonal on N(x).
Applying now the mean-value theorem on the square root function (expression) in (35) we find that there exists a
number ξ ∈ (0,1) such that :

2 2e |h | 2A = − M|h | + r
2 2 22 √r + ξe |h |

2 2e |h | 2≥ − M|h | + r.
2 2 22 √r + e |h |

Now choose two positive numbers r , h so small thato o

2e
> M

2 2 22 √r + e |h |o o

then (25) obviously holds. This completes the proof of the lemma.

Proof of Theorem 4 :

We shall prove :

That there exists a number λ > 0 such that every minimal join
emanating from S is distance minimal to S for a length λ. (36)

The proof of (36) follows from the two subsequent assertions namely assertion 1 and assertion 2.
Assertion 1: There exist two positive numbers δ, R such that the following holds:

Let x be any point in D and let g (t) be any arc-length parametrized segment with g (0) = q(x). Assume there exist twox x
(arbitrarily small) positive numbers ω, η such that the segment g [0,η] is distance minimal to the subset q(U ) of Sx ω
where U = { y ∈ D /|x − y | ≤ ω}.ω

Then for all points

y ∈ U ( x ) \ { x } we have |q(y) − g (t) | < t if t ≤ R.δ x

This means a segment g (t) which starts as a locally distance minimal join at any point q(x) is distance minimal to thex
(whole) subset q(U ) if the length of g (t) is ≤ R .δ x

Proving this assertion 1 is the difficult part of the theorem’s proof. We shall give the proof of assertion 1 further
down.

The other assertion used to complete the proof of theorem 4 is the following

10 ′ ′Note e exists because D is compact and e > 0 because here f (x)(h) ≠ 0 as f (x) has maximal rank.
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′ ′Assertion 2: For any positive number δ there exists a number α(δ ) such that for any two points x,y in D with
′ ′|x − y | ≥ δ we have |q(x) − q(y) | ≥ α(δ ) .

Proof of Assertion 2: Assertion 2 holds because the surface S is free of self intersections and because it is defined
over a compact parameter domain D.

Namely define

′ ′α(δ ) = min { |q(x) − q(y) | / (x,y) ∈ D × D, |x − y | ≥ δ}. (37)

4 4 ′ 4The set D × D is a compact set in R and {(x,y) ∈ R / |x − y | ≥ δ} is a closed set in R . Therefore the set
4W = (D × D)∩B is a compact subset in R . The function (x,y) → a(x,y) : = |q(x) − q(y) | is a continuous function on

4R . This function a( x, y ) is positive on W because x ≠ y and because the map q(s,t) is free of self-intersections.
The function a(x,y) being a continuous function defined on a compact set W must attain its minimum which must be

′positive here. This shows that α(δ ) > 0 and proves assertion 2.

Combining assertion 1 and assertion 2 we finish now the proof of theorem 4.  This will prove the theorem 4 by using
the still unproven assertion 1 which we will show further down.

Completing the proof of theorem 4 by using assertion 1 and assertion 2: Let δ,R > 0 be the numbers described
’in assertion 1 and let α( δ ) be the number described in assertion 2. Then the claim of theorem 4 will hold if we

define

1
λ = min{ α(δ), R }.

2
11This means any minimal join g (t) starting at any point q(x) in S remains distance minimal to the surface S over thex

length λ. This holds because by assertion 2 no point q(y) in D with |x − y | ≤ δcan have have a distance less than λ
to the point g (λ). Therefore at most a point q(y) with |y − x | > δ may have a distance smaller than λ to the pointx
g (λ). However this is impossible because by assertion 2 for points with |x − y | ≥ δ is |q(x) − q(y) | ≥ α(δ). Thus ifx
|x − y | ≥ δand 0 ≤ t ≤ λ then:

2λ ≤ α(δ) ≤ |q(y) − q(x) | ≤ |q(y) − g (t) | + |q(x) − g (t) |x x

2λ ≤ |q(y) − g (t) | + tx

λ ≤ |q(y) − g (t) |.x

Thus for points y outside U (x) a point q(y) is not closer than distance t to the point g (t) if 0 ≤ t ≤ λ. Thisδ x
proves theorem 4 using the unproven assertion 1.

We finish now the proof of theorem 4 by giving a proof for assertion 1

Proof of Assertion 1: The Lemma 3 implies assertion 1 in most but not all cases where a minimal segment g (t)x
starts on a surface patch S. (Note we assume that g (t) is arc-length parametrized.)x

It covers all the cases where the segments initial point q(x)=g (0)x
is not on the boundary of the patch, because in such a case the
initial direction of the segment g (t) must be normal to the patch S. (38)x

The lemma covers even more cases.  Namely if the minimal join g (t) starts in the interior of one boundary edge bx
then it must be orthogonal to that boundary edge b. Here now the lemma 3 implies that g (t) remains to be (locally)x
a minimal join to the boundary edge b. In other words in this situation lemma 3 shows that:

11To specify our notation we say here that we assume that g (t) is arc-length parametrized.x
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all points  in q(U (x)∩b) are further from g (t) than the point q(x) ifδ x
t ≤ R and if we assume that R stands for the number r in lemma 3. (39)o

Note assertion 1 is equivalent with the statement:

for all x in D  the distance d(q(U (x)), C ) ≥ R (40)δ U (x)δ
As the picas are dense in the cut locus by Theorem 2, (40) is equivalent to the statement

for all x in D the set q(U (x)) has no picasδ
coming closer to it than distance R. (41)

The preceding conclusions so far drawn from lemma 3 show that C contains no pica p in distance closer thanq(U (x))δ
12R to q(U (x)) such that one of the foot points of p is either anδ

interior point of the patch (42)

or a vertex point of the patch (43)

Clearly the case (42) is excluded by the above statement (38) and (43) is excluded by the combination of (38) and
(39). Namely if one foot point is a vertex point v then (under our nearness assumptions) the other foot point of the
pica must either be an interior patch point or must be on a boundary edge containing the vertex v. Therefore the
only remaining case which needs to be treated i.e. shown to be impossible is the one :

where a pica point p has two oblique minimal joins to S which have two foot
points q(x) and q(y) in two adjacent boundary curves and where |x − y | ≤ δ. (44)

Indeed case (44) is actually the situation which allows the cut locus to come arbitrarily close to a boundary vertex in
case the vertex is concave. Before we start a detailed discussion of the oblique pica case (44) we show now first that

any corner part of the patch S can be locally
approximated by a convex planar subset. (45)

Proof of (45): Let

L = ( ∂ q(0,0) ∂ q(0,0) )s t

be the differential related to the vertex point q(0,0) of the patch S. Let

tCo(ε) = {(s,t) ∈ [0,1] × [0,1] / |(s,t) | < ε}

Co(ε) is obviously a convex set and the linear map L (preserving convexity ) will map Co(ε) onto a convex set
2L(Co( ε )) ⊆ L( R ) .

The set L(Co(ε)) must be contained in a proper sector in the Euclidean plane with an opening angle ω < π. This
tterm proper holds because L(Co(ε)) cannot contain a straight line segment g passing unbroken through L((0,0) )

because otherwise we could find two vectors x , x ∈ Co(ε) such that L(x ), L(x ) would be collinear to g. This1 2 1 2
would yield a contradiction with the facts that x , x are linear independent and that the linear map L having1 2
maximal rank preserves linear independence.

Exploiting the approximation properties of the differential L we find that D = q( Co(ε) ) is contained in a a set Ap(ε)ε
13which can be described as follows

M 2D ⊆ { L(s, t ) + R(s,t) / L(s,t) ∈ L(Co(ε)), | R(s,t) | ≤ |L(s,t) | }ε β

12A foot point of p on q(U (x)) is defined as a point nearest of q(U (x)) to p.δ δ

13Moreover this set Ap(ε) yields also a quadratic approximation of Dε
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14where
2β = min{ |L(s,t) | / |(s,t) | =1 }

and M is defined by (27), (34).

Obviously for sufficiently small ε > 0 the set D can be shown to be contained in a convex set sayε

2D ⊆ { L(s, t ) + R(s,t) / L(s,t) ∈ L(Co(ε)), | R(s,t) | ≤ α(ε) M |L(s,t) | }ε

where α(ε) can be made arbitrarily small if ε is shrinking to zero.  This completes the proof of (45).

We continue now the discussion of (44) that is we continue to show why (44) is not possible if the number δ in (44)
is chosen sufficiently small.  For this pick any point p = q(s ,0) on a boundary curve b whereo o o
b = {q(s,0) / 0 < s ≤ 1 }. The surface normal N(q(s ,0) and the two tangent vectors ∂ q(s , 0 ), ∂ q(s ,0) span theo o s o t o

3 33-space R at q(s ,0). The plane spanned by N(q(s ,0), ∂ q(s , 0 ) separates the 3-space R into two half spaces.p o o s o po o
+The vector ∂ q(s , 0) points into the half space H corresponding to the interior of the patch at p . The vectort o p oo

- +− ∂ q(s , 0) points into the half space H corresponding to the exterior of the patch at p . Let v be any unitt o p o po o
+vector vector in H and letp

+g( s ) = {p + sv / 0 ≤ s ≤ 1}o po
+be a segment starting at p and pointing into the direction v . Then :o po

for sufficiently small numbers s the orthogonal projection of g(s) onto S
will be contained on  the patch S in a neighborhood of the point p . (46)o

+ +Here (46) holds because the projection p (v ) of v into the tangent plane spanned by ∂ q(s , 0 ),∂ q(s ,0) isT p p s o t oo o
+transversal to the boundary curve at p and points into the patch interior if v is not collinear to the surface normalo po

+at p . (In case v is collinear to the surface normal at p then (46) holds anyhow.)  Using (46) it is not difficult too p oo

see that for arbitrarily small values of s there are points x(s) on S such that |x(s) − g(s) | is smaller than s.
15 +Therefore g(s) cannot be (a locally) minimal join to S if the initial direction v is chosen from H and if v isp p po o o
not collinear to the surface normal at p . Thus in order to have an oblique minimal segment g(s) at the boundaryo

− − -point p we must choose an initial direction v ∈ H . We can now assume that v is not collinear to the surfaceo p p po o o
normal at p because that case had already been settled in the preceding discussions essentially as a consequence ofo

−lemma 3. Let now g(s) = { p + sv / 0 ≤ s ≤ 1}.o po
Now if g(s) is locally distance minimal to S then :

′g (0) must be orthogonal to the boundary edge b aso
-p ≠ q(0,0), hence v is orthogonal to ∂q(s , 0 ). (47)o p oo

-Let g (s) be an arc-length parametrized distance minimal segment emanating from the boundary edge b adjacent to1
b i.e.o

b : = {q(0,t) / 0 < t < 1}1

- -′The segment g (s) is oblique to the boundary edge in a way analogue to g(s), i.e. g(0) points also into the

M
14 2For fixed given values (s,t) the vector R(s,t) attains all points in a disc of radius |L(s,t) | .β
15This is obvious in case S agrees with its tangent plane at p . In the general case it follows because this tangent plane yields a first ordero

approximation of the patch S in a neighborhood of the point p and because the difference between s and the distance of g(s) to the tangent planeo
at p is given by a positive linear function φ(s) in the variable s say φ(s) = m s.o
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-corresponding (exterior) half space H - . We want to show that:g(0)

-there exists a positive number R such that g(s) ≠ g(s) for all s ≤ R
-if the initial points g(0), g(0) are sufficiently close. (48)

- -Now let g (s), g (s) be projections of g(s), g(s) into the tangent plane T spanned by ∂ q(0,0), ∂ q(0,0) at q(0,0).  IfT T s t
-g(s), g(s) are supposed to intersect then also their projections.  We are essentially interested in the case where g(0),

-g(0) are located arbitrarily close to the vertex q(0,0). We have established above below (45) that ∂ q(0,0), ∂ q(0,0)s t
′build a convex vertex angle β smaller than π. For positive sufficiently small numbers s,t say 0 < s,t < δ the angleo

between ∂ q(s,0), ∂ q(0,t) comes arbitrarily close to β and is therefore also smaller than πas well.  Using elementarys t
-planar geometry it can be shown that the segments g[0,∞), g[0,∞) will not intersect if the initial points g(0)=q(s,0),

- ′g(0)=q(0,t) are chosen such that s,t < δ . Therefore in order to have minimal joins which start oblique from theo
-boundary edges b \{q(0,0)}, b \{q(0,0)} intersect one has to choose the initial points g(0)=q(s,0), g(0)=q(0,t) sucho 1

′ ′that s, t > δ . This proves that (44) is not possible if δ is here smaller than δ . The same considerations can beo o
applied for the corresponding situations at the remaining three vertices. It is now obvious that for an appropriately
small chosen δ the case (44) is impossible. This finishes the proof of assertion 1.

As we have now established assertion 1 we have also completed the proof of the theorem 4.

Analyzing the preceding proof of theorem 4 one finds that theorem 4 holds also in the more general case if the
2 1domain D is chosen to be any set in R which has the property that there exists a C -diffeomorphism φ from D to a

2compact convex set in R with the derivative of φ being Lipschitz continuous.  The preceding theorem is useful in
studying surface intersections, see Kriezis, Patrikalakis, Wolter [20] and Kriezis [19]. Another result being
essentially a consequence of the preceding theorem 4 is the subsequent corollary.

Corollary 4.1: Using notations and assumptions of Theorem 4 then for any positive number ε ≤ λ :

3 1,1A) The offset O (S) = {x ∈ R |d(x,S) = ε} is a C -smooth manifold, diffeomorphic to the embedded two-ε
ndimensional unit sphere and the offset region OR (S) = {x ∈ R |d(x,S) ≤ ε } is a solid homeomorphic to the 3-ε

3dimensional unit disc {x ∈ R | |x | ≤ 1 }.

B) The surface S is the medial axis of the solid OR (S).ε

Proof of Corollary 4.1 : Our proof of part A) will be sketchy and we will omit some detailed steps which are not
3 3difficult to carry out.  Let Q = {(u, v, w ) ∈ R | w = 0, (u, v ) ∈ [0,1] × [0,1] } be the unit square embedded in R .

3 3Let OR (Q) = {y ∈ R | d(y, Q ) ≤ ε} , O (Q) = {y ∈ R | d(y, Q ) = ε} be offset region and offset surface respectivelyε ε
for the progenitor set Q and offset distance ε. It is not difficult to show that OR (Q), O (Q) are homeomorphic toε ε
the closed three-dimensional unit disc and the two-dimensional unit sphere respectively with O (Q) being theε
boundary surface of the bordered manifold OR (Q). We prove part A) by defining a homeomorphismε
ψ : OR (Q) → OR (S). This homeomorphism ψ which also induces a homeomorphism between O (Q) and O (S) isε ε ε ε
constructed such that

ψ maps distance minimal segments between Q and O (Q)ε
on distance minimal segments between S and O (Q). (49)ε

We give now a detailed description of the map ψ. For this we denote the parametric surface map representing S by
3f(u,v) : [0,1] × [0,1] → R . The surface normal of S at a point f(q) ∈ S is denoted by N(q) and depends continuously

on the variable point q ∈ Q. Let e = {(u,v,w) ∈ Q | v = 0}, e = {(u,v,w) ∈ Q | u = 1}, e = {(u,v,w) ∈ Q | v = 1},1 2 3
e = {(u,v,w) ∈ Q | u = 0} be the four edges of ∂Q. These edges can also be viewed as paths depending on the4
variables u or v respectively, in this context they are denoted by e (u), e (v), e (u), e (v). For any of those four1 2 3 4
edges e , 1 ≤ i ≤ 4 we define the exterior boundary normal n in the tangent plane of S say at a point e (u) by a uniti i 1
tangent vector n (u) of S at the point e (u) ; the exterior boundary normal vector n (u) must be chosen orthogonal on1 1 1
the tangent vector ∂ f(u, 0) and the sign of n (u) is determined by the condition that the angle between − ∂ f(u,0)u 1 v

′ ′and n (u) must be smaller than π/2. Note that the line parallel to the tangent vector Df(e (u) ) ( or Df(e (v) )1 i i
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respectively ) separates the related tangent plane into two half planes and n is chosen to point into the exterior halfi
space which does not contain the "interior" tangent vector ∂ f(u,0), − ∂ f(1,v), − ∂ f(u,1), ∂ f(0,v) respectively forv u v u
the cases i = 1, 2, 3, 4. These considerations together with the condition that n must be orthogonal on the tangenti

′ ′vector Df(e (u) ) ( or Df(e (v) ) respectively ) give the complete definition of the exterior boundary normal n . Toi i i
simplify the description of the map ψ we need also to introduce the subsequent definitions

If u,v ∈ [0,1] then ∆u = ∆v = 0

If u,v ∉ (0,1) then

∆u = − u if u ≤ 0, ∆u = u − 1 if u ≥ 1
(50)

∆v = − v if v ≤ 0, ∆v = v − 1 if v ≥ 1

With these notations we define now the map ψ(q) with q = (u,v,w) . If (u,v) ∈ [0,1] × [0,1] then
ψ(q) = wN(u,v) + f(u,v).

2 2If v ≤ 0 and u > 0 and if √ (∆u) + (∆v) > 0 then

ψ(q) = f(u − ∆u, v + ∆v) + w N(u − ∆u, v + ∆v) +

∆u n + ∆v n1 22 2√(∆u) + (∆v) . (51)
| ∆u n + ∆v n |1 2

On the other three rectangular strips around the boundary of the unit square Q the map ψ(q) is defined analog to the
definition given in (51). The map ψ is obviously continuous and elementary considerations show that the map ψ has
property (49). It is not difficult to verify that the preimage under the map ψ of any shortest segment between S and
O (S) is a shortest segment between Q and O (Q). All these considerations together show that ψ : OR (Q) → OR (S)ε ε ε ε
is a continuous, injective map onto OR (S), where the injectivity follows because ε < d(S, C ) i.e. the distance of S toε S
its cut locus is larger ε. This shows that ψ defined on compact set and being a continuous, injective map onto its

16image set is a homeomorphism . This fact in conjunction with theorem 2 essentially imply part A of the corollary.
1,1 3Note the claim that O (S) is a C -smooth two-dimensional submanifold of R follows with the implicit functionε

1,1theorem (c.f. [5]) from the fact that the distance function d(S, .) is C −smooth with a non-zero gradient on O (S)ε
which holds by theorem 2B because d(S, C ) > ε. Finally the claim that O (S) is diffeomorphic to the the unit sphereS ε

2 17S follows because O (S) has the homeomorphy type of the unit sphere and because smooth, compact two-ε
dimensional homeomorphic manifolds are diffeomorphic cf. Hirsch [11].

Proof of corollary 4.1 B) : It has been established in the proof of part A) that the homeomorphism ψ maps disjoint
shortest segments between O (Q) and Q on disjoint shortest segments between O (S) and S and that the inverse mapε ε
of ψ maps disjoint shortest segments between O (S) and S onto disjoint shortest segments between O (Q) and Q.ε ε
The homeomorphism ψ provides a one to one correspondence between the intersection points of minimal joins in
both sets OR (Q) and OR (S); those intersection points are given in OR (Q) by the intersection of minimal joinsε ε ε
between O (Q) and Q and in OR (S) by the intersection of minimal joins between O (S) and S. Clearly thoseε ε ε
intersection points of minimal joins are picas with respect to either one of two reference sets O (Q), O (S).ε ε
Therefore and because Q is the set of picas in OR (Q) respective O (Q) it is obvious that the image set ψ(Q) = S isε ε
the set of picas in OR (S) respective O (S). This proves part B) in view of theorem 1 and employing the fact that theε ε
picas are dense in the cut locus by theorem 2 A).  This finishes the proof of corollary 4.1

1In practical terms this corollary 4.1 states that any regular C -smooth regular spline surface patch which is free of
self-intersections can be manufactured (modelled) with a ball cutter of radius ε where the center of the ball cutter

16Note that it is a well known fact from point set topology that a continuous, injective map defined on a compact domain yields a
homeomorphism onto the image set of the compact domain cf. e.g. [17], [15].

17 2Note that O (S) is homeomorphic to S because O (S) is via ψ homeomorphic to O (Q) and because it is easy to construct a homeomorphismε ε ε
2between S and O (Q) as this construction may employ convexity properties of the solid OR (Q) .ε ε
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1,1moves along a compact C -smooth offset surface O (S) being diffeomorphic to the unit 2-sphere.  This offsetε
surface O (S) bounds a solid OR (S) whose medial axis equals the surface S. In other words, if the offset distance isε ε
smaller than the distance of the progenitor surface S to its cut locus then the progenitor surface is the medial axis of
the offset region, see also figure 1 illustrating a surface S and a related offset surface OR (S). Another engineeringε
application for the discussed offset surfaces and offset regions arises within the context of tolerancing where one
wants to determine if a manufactured object fits within a specified tolerance region (offset region) of an ideal design
surface, see Rossignac [43], Rossignac and Requicha [44] and Patrikalakis and Bardis [36].

Figure 1: The Progenitor Surface S as Medial Axis of the Offset
Region OR (S)ε

Analyzing the preceding proof of theorem 4 one can derive another conclusion interesting enough to be called a
theorem. Namely we have

nTheorem 5: Cut Locus avoids compact unbordered submanifolds of R . Let A be any compact
1 nunbordered C -smooth submanifold of R . We assume that all local parametrizations of A have locally

Lipschitz-continuous first derivatives. Then there exists a positive number β such that the cut locus CA
stays away further than distance β from A.

Proof of Theorem 5 : This proof exploits essentially that lemma 3 is formulated for any function f(x) defined on
n n+many convex solid in R and that the range of the function f(x) is the space R , m any integer larger than zero. This

1lemma 3 proves case ( 38 ) of assertion 1 the only case needed if the reference set A is an unbordered C -smooth
manifold. Exploiting also that A being a submanifold is free of self-intersections it easy to generalize assertion 2 to

n+mlocal parameterizations of a compact submanifold A of R . Applying these considerations together with the
arguments used while completing the preceding proof of theorem 4 using assertion 1 and assertion 2 on a finite
number of local parameterizations which cover A then employing compactness arguments it is not difficult to show
that C cannot come arbitrarily close to A. This completes the proof of theorem 5.A
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3.4 The Relation of the Cut Locus to Equidistantial Sets and Voronoi Diagrams
We want to explain how the concept of cut locus is related to two other related concepts in computational geometry
and geometric modelling. Those related concepts are the concept of a Voronoi diagram of a discrete point set and
the concept of an equidistantial set (surface) or mid set of two disconnected sets. We hope that our subsequent
results will help to clarify possible confusions in this area. It will turn out that the cut locus concept introduced by us
offers a common framework unifying apparently different concepts such as Voronoi diagrams, equidistantial sets
and medial axes.

nLet A, B be closed and disjoint subsets of R . The disjointness condition means that

A∩B = ∅ . (52)

The equidistantial set with respect to the pair of sets A, B is denoted by V(A,B) is defined by
nV(A,B) = {x ∈ R /d(A,x) = d(B,x)} (53)

Under these assumptions we have

Theorem 6: Equidistantial Sets as Subsets of the Cut Locus. The equidistantial set of two disjoint closed
sets A, B is a subset of the cut locus C of the union A∪ B i.e. with the notation introduced above weA∪ B
have

V(A,B) ⊆ CA∪ B

Proof : Let x be a point in V(A,B). Then by [52], p. 38 there exists a point x being nearest on A to x and thereA
exists a point x being nearest on B to x. Because of (53) the two minimal joins seg[x ,x], seg[x ,x] are bothB A B
distance minimal from x to A∪ B. Therefore and because x ≠ x as (52) the point x must be a pica respective A∪ B.A B
Thus x is in C which proves the theorem.A ∪ B

We want to point out that the relations between equidistantial sets and cut loci become much more complicated in
case one removes the disjointness condition (52). To illuminate this we describe the following example. Consider
two half circles S , S the union of which builds the planar unit circle and we assume that1 2
S ∩ S = {x = (0,1), x = (0,−1)}. In this situation V(S ,S ) contains the whole y-axes while C contains only1 2 1 2 1 2 S ∪ S1 2
the point (0,0).

Another quite instructive example is the following one being a modification of the former example : Here S is1
2 2defined to be the circular arc {(x,y)/(x + 0.75) + y = 1, x ≤ 0} and S the circular arc defined by2

2 2{(x,y)/(x − 0.75) + y = 1, x ≥ 0}. In this example S , S intersect transversally while in the former example the1 2
intersection was tangential.  Here now V(S ,S ) equals the y-axis while the medial axis of S ∪ S equals the1 2 1 2
segment {(x,y)/y = 0, |x | ≤ 0.75}. The cut locus C contains the latter medial axes together with the setS ∪ S1 2

{(x,y)/ x = 0, |y | ≥ √7/16}.

In order to state our next theorem we need to review some definitions related to the concept of Voronoi diagrams.
We follow here essentially Preparata and Shamos [40].

n nLet P = { p ∈ R | i ∈ I } a set of discrete points in R , with the set I being used as a set of indices to distinguish thei
points in P. This set may even be infinite we assume however that the points in P do not have a cluster point. In
order to explain the concept of a Voronoi diagram we define first for every p in P the locus of proximity V(i)i
containing those points which are closer to (or at least not farer from) p than to any other point of P \{p }. Clearlyi i
the set V(i) can be characterized as

nV(i) = {x ∈ R / d(x,p ) ≤ d(x,P \{p })} (54)i i

Obviously the set V(i) can also be characterized by the equation

nV(i) = {x ∈ R /d(x,p ) ≤ d(x,p ) for all p ∈ P\{ p } } (55)i j j i
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The set

nH(i,j) = { x ∈ R / d(x,p ) ≤ d(x,p ) } (56)i j
ndefines a closed half space in R . The boundary of this half space is given by the plane containing all points which

are equidistantial to the two points p , p . Or with the notation introduced above the boundary of H(i,j) can bei j
described also as the medial set V({ p }, { p } ) with respect to the two point sets { p }, { p } each of whichi j i j
containing a single point.  With (56) and (55) we can obviously redefine V(i) as an intersection of half spaces i.e.

V(i) = ∩ H(i,j) (57)
i ≠ j

This redefinition of V(i) also shows that

V(i) being an intersection of convex sets is convex. (58)

Using concepts and notations introduced above in (54), (55) we give now the following definitions:

Definition : The boundary ∂V(i) of the locus of proximity V(i) is the Voronoi polygon (polytope) respective the
point p of the given set P.i

It is obvious that a point in ∂V(i) is contained in a boundary plane of some H(i,j).

Definition : We call the union of all the polytopes ∂V(i), p ∈ P is the Voronoi diagram V(P) respective the point seti
nP in R i.e.

V(P) : = ∂∪ V(i) (59)
p ∈ Pi

We shall use the subsequent characterization of ∂V(i) i.e we need that

n∂V(i) = {x ∈ R / d(x,p ) = d(x,P \{p }) } (60)i i

Proof of (60) : Let x ∈ ∂ V(i). Then in view of (57) there must exist a point p ∈ P \{p } such that x is contained inj i
the boundary plane of H(i,j). This boundary plane is equidistantial between between p and p hence d(x,p ) = d(x,p )i j i j
for some j ≠ i. Thus

d(x,p ) = d(x,p ) ≥ d(x,P \{p }) (61)i j i

The point x being contained in ∂V(i) is also in V(i). Therefore (54) together with (61) imply d(x,p ) = d(x,P\{p }).i i
Thus the point x must be contained in the set given by the right hand side of equation (60).  This proves the inclusion
" ⊂ " claimed by (60).  It remains to show the converse inclusion " ⊃ " which is also claimed by (60). For this let x be
a point contained in the set described by the right hand side of (60). Then by (54) the point x is contained in V(i).
Let p be a point nearest in P \{p } to x. Then x is in the boundary plane of H(i,j). Thus the half space H(i,j) cannotj i
include any open n-dimensional disc D containing x. Therefore V(i) being ( by (57) ) a subset of H(i,j) cannot
include such a disc D either. This proves that x cannot be an interior point of V(i) and thus x must be a boundary
point of V(i) .  This shows the inclusion " ⊃ " and completes the proof of (60).

We give now our description of the Voronoi diagram by the cut locus i.e.  we have the following result.

Theorem 7: The Voronoi Diagram as Cut Locus of a Discrete Point set.  For any discrete set of points
n 18P = { p ∈ R | i ∈ I} is the related Voronoi diagram characterized by the relationi

V(P) = C (62)P

Proof of theorem 7 : We show now (62). This means according to our definition of a Voronois diagram stated in
(59) we have to prove

18The set I serves here as a set of indices used to distinguish the points in P.



23

∪ ∂ V(i) = C (63)P
p ∈ Pi

For this we show first that a point x in V(P) must also be contained in C . Let x ∈ V(P). Then there exists a pointP
p ∈ P such that x ∈ ∂ V(i). Clearly for any p ∈ P is d(x,P) = min{ d(x,p ), d(x,P\{p }) }. Thus using (60) we find thati i i i

d(x,P) = d(x,p ) = d(x,P \{p }) (64)i i

Therefore and because {p }∩(P \{p }) = ∅ there exist two distinct distance minimal joins from x to P. One of thosei i
joins ends in {p } the other ends in P \{p }. Thus x is a pica respective P. Therefore x is in C . This proves thei i P
desired inclusion.

We show now the other inclusion claimed by (63).  For this let x be a point in C . As by theorem 3 A) the picas areP
dense in C it is easily seen that x must be a pica respective P. Thus there exist at least two distinct minimal joinsP
from x to P. Those two minimal joins end up in two distinct points p , p in P. Thus we havei j

d(x,P) = d(x,p ) = d(x,p ) (65)i j

Now using that p ∈ P \{p } we getj i

d(x,P) ≤ d(x,P \{p }) ≤ d(x,p ) (66)i j

The combination of (65) and (66) yields

d(x,p ) = d(x,P \{p }) (67)i i

Therefore (60) implies that the point x is in ∂V(i). This proves that x is in V(P) and finishes the proof (63).  This
completes the proof of theorem 7.

4 Global Results on the Medial Axis

4.1 The Medial Axis has the Homotopy Type of its Reference Solid
The fundamental global topological shape relation between a solid B and its medial axis M(B) is stated in the
following:

Theorem 8:  Global Topological Shape Theorem for the Medial Axis: Let B be a compact bordered
n 19 2 nn−dimensional submanifold of R . Let us assume that ∂B is C -smooth submanifold if B ⊂ R ; in case

2 2B ⊂ R the weaker boundary regularity namely ∂B being piecewise C -smooth (possibly disconnected)
submanifold is sufficient.  Under these assumptions the medial axis M(B) is a deformation retract of B.

Proof of the Shape Theorem:
20The proof of the global shape theorem consists in constructing a retract :

R : B \ ∂B → M(B) \ ∂B (68)

and a homotopy

f(x,t) : (B\ ∂B) × I → B\ ∂B (69)
with I = [0,1],

19 nThis means in practical terms that B is a compact solid in R .

20See e.g.  Massey [28] for the definition and discussion of a deformation retract.
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such that

f(x,0) = x, f(x,1) = R(x) for all x ∈ B\ ∂B (70)

and
f(y,t) = y  for all (y,t) ∈ (M(B) × I). (71)

The retract map R must be continuous and must satisfy
R(x) = x  for all x ∈ M(B) \ ∂B. (72)

In order to construct the deformation retract we define the homotopy f(x,t) by

f(x,t) := x + t d(x,ψ(x)) ∇ d(∂B,x)
with ∇ d(∂B, x ) being the gradient of the
distance function x → d( ∂B, x ) at the point x
for x ∈ M(B) we define f(x,t) = x; (73)

Here in (73)

ψ(x) is defined to be the point where the extension
of the minimal join from ∂B to x meets M(B) = C ∩B . (74)∂B

Figure 2: Deformation Retract

See also figure 2 illustrating the deformation defined by (73), (74).  The proof for the continuity of the map ψ(x)
makes use of part A) of theorem 3. We shall show the continuity of the map ψ(x) later.  To prove the continuity of
f(x,t) we need to exploit also part B) of theorem 2 which in view of theorem 1 guarantees the continuity of the
gradient function
x → ∇ d(∂B,x) on B \ (∂B ∪ M(B)).
Note the range of the homotopy f(x,t) is indeed in B \ ∂B for any (x,t) ∈ (B \ ∂B ) × I
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i.e. f(x,t) ∈ B\∂B (75)

because obviously d(f(x,t), ∂B) ≥ d(x,∂B) > 0 for all t ∈ I and because (by Proposition 1) ∂B separates B\∂B
nfrom R \B. These two conditions imply (75). Namely assume there exists a point x ∈ B\∂B with

n ∗ ∗ ∗ ∗f(x, t ) ∈ (R \ B∪∂ B ). Then there would exist a number t with 0 < t < t such that f(x, t ) ∈ ∂ B , d( f(x, t ), ∂B ) = 0 a1 1
contradiction. The reason why we defined f(x,t) on B \ ∂B is that ∇ d(∂B, . ) can generally not be extended
continuously to the boundary ∂B if ∂B is not smooth.

We need to make the preceding proof formally complete.  For this we we must show that:

the map f(x,t) is well defined and continuous. (76)

We also need to verify that

R(x)=x for x ∈ M(B). (77)

In view of the definition of R(x) in order to show (77) one needs to prove

f(x,1)=x for x ∈ M(B) (78)

To prove (76) and (78) we shall use that

the map ψ(x) is :
well defined, (79)

continuous, (80)

and

ψ(x)=x for x ∈ M(B). (81)

We shall prove (79), (80), (81) later.  Let us for the time being assume that those three claims are correct and and let
us use them to establish (76) and (78).  To do this we use also theorem 2B) and theorem 1. Namely by theorem 2B)
the gradient of the function describing the distance to ∂B i.e. ∇ d( ∂B, x ) is continuous on B\ (∂B∪ C ) and by∂B
theorem 1 we have M(B) = C ∩B. Therefore∂B

∇ d( ∂B, x ) is continuous on  B\ (∂B∪ M( B )) (82)

Using (82) together with (80) and (79) it is obvious that the map f(x,t) is continuous and also well defined if x is
outside of M(B) .  Thus to complete the proof of (76) it remains to show that

f(x,t) is also well defined and continuous if x is in M(B). (83)

Clearly by (81) we have f(x,t)=x for x in M(B). This shows (78).  Let now be x be any point in M(B) , t any point ino o
[0,1] and let (x ,t ) be any sequence in (B \ ∂B ) × [0, 1] converging to (x , t ). For proving the continuity of f(x,t) forn n o o
any point x in M(B) we have to show that f(x , t ) converges to f(x , t ) . Using (81) and (80) we find that then n o o
sequence t d(x , ψ(x )) is converging to 0. This together with the fact that the norm of the vectors ∇ d( ∂B, x ) isn n n
bounded by 1 proves that the sequence t d(x , ψ( x ) )∇ d( ∂B, x ) must converge to 0, hence f(x , t ) must convergen n n n n n
to x . This proves that f(x,t) is also continuous at any point x in M(B) thus it completes the proof (83) and finisheso o
the proof of (76).

It remains to show ( 79), (81) and (80).  Clearly the claim of (81) can be viewed to be a consequence of the
definition of ψ(x). This proves (81).  We have to show (79). For this we have to prove that for every point x in B \ ∂B
the definition given for the function ψ describes a unique point ψ(x). Let x be any point in B \ ∂B. The case where x

’is in M(B) has already been settled before. Let us therefore assume that x is not in M(B). By theorem 2A we know
that there exists a unique minimal join g from ∂B to x . This segment g has length larger than 0 because x is not onx x
∂B. Extending g beyond x the extension must eventually meet ∂B by Proposition 1 because x is in B \ ∂B. Thisx
means that the latter extension segment fails eventually to be distance minimal to ∂B. Thus the extension must meet
C ∩B = M(B) before leaving B \ ∂B, say it meets C not closer than in distance δ > 0 to ∂B. The extension∂B ∂B
segment say extended up to distance δ/2 to the boundary is compact and contained in B \ ∂B. Denote this extension
segment by seg. The intersection of the compact set seg with the closed set M(B) is compact, recall M(B) was
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defined to be closed as it includes all limit points.  is compact because M(B) is closed.  Therefore there exists a
unique point nearest to x on the intersection of M(B) with the extension segment seg. This proves (79).

It remains to show (80). We do this now. For this we show that:

If x is any sequence in B \ ∂B is converging to any point x in B \ ∂Bn o
then ψ(x ) converges to ψ(x ). (84)n o

To prove (84) let us discuss first the case that x is outside M(B) i.e.o

α = d(x , M(B) ) > 0 (85)o

The minimal join g from ∂B to x can by (79) be extended until it meets M(B) in a point ψ(x ) ≠ x . The segmentx o o oo

g starts in a boundary point b and g contains x as an interior point. Let g be the minimal join from ∂B to x .x o x o x no o n
Then the segment sequence g must converge to the segment g because otherwise the point x would be a picax x on o

21contradicting the assumption that x is not in M(B). Therefore the sequence of of segments defined to be theo
extensions of g until ψ(x ) ∈ M(B) has all its limit points in an extension of g . As M(B) is closed any limit w ofx n xn o
the sequence φ(x ) must be contained in M(B). Such a limit point w of ψ(x ) cannot be an interior point of then n
segment joining x with φ(x ) as this segment (being the extension part of the minimal join from the boundary ∂B too o
x ) does not meet M(B) before it reaches ψ(x ). We want to show thato o

w = ψ(x ) (86)o

It remains to exclude the possibility that w is located on the extension of seg[b , ψ(x )] after the point ψ(x ).o o o
Assume the latter happens. The sequence of minimal boundary joins yields a subsequence converging to a minimal
segment g from w to ∂B. This minimal segment would now include ψ(x ) as an interior point contradicting thel o
assumption that ψ(x ) ∈ M(B) is a nonextender because all points in M(B) are nonextenders by theorem 3 A) undero

22the continuity assumptions stated above for ∂B in theorem 8. This proves (86) for the case that x is outside ofo
M(B). Let us therefore discuss now the case that x is in M(B). Again we have to prove (86).  Let now x be ao n
sequence converging to x ,x a point in M(B). Let d = seg[b , ψ(x )] be the segments defined by extending theo o n n n
minimal join from the boundary ∂B to x up to the point ψ(x ); we assume here that b is the point where then n n
segment d starts at the boundary.  Let w be any cluster point of the sequence ψ(x ). We must prove (86). Assumen n
that d denotes also the subsequence of segments whose end points ψ(x ) converge against w. The sequence dn n n
contains a subsequence which converges to a minimal join d from ∂B to w, c.f. [4], p. 20 or [52]. As all d containo n
the corresponding x the limit segment d must contain the limit point x of the sequence x . Note by definition ofn o o n
the map ψ we have ψ(x ) = x by (81) because x is now in the set M(B) which contains only nonextenders.o o o
Therefore the segment d being a minimal join from the boundary to the point w = limψ( x ) contains theo n
nonextender point x = ψ(x ). Clearly this is only possible if w = ψ(x ). This shows (86) in case x is in M(B) \ ∂Bo o o o
and completes the proof (84), hence the proof of (80) is finished. Therefore the proof of Theorem 8 is now complete.

We now draw some conclusions from the fundamental shape theorem by applying standard results of homotopy
theory cf. eg. [47]:

Corollary 8.1: Under the assumptions of Theorem 8 the medial axis M(B) is path-connected because B is path
connected and it has the same homotopy type as B; hence all homotopy groups of B and M(B) agree, hence M(B) is
simply connected if B is simply connected.

21It is well known that any sequence of minimal joins contained in a compact set contains a subsequence converging against a minimal join,
c.f. [4], this result is applied here and will be applied often in proofs without explicit reference.

22Note to establish the continuity of ψ(x) we use at this point that all points in M(B) are nonextenders.  As we also use the property that M(B) is
closed we need in this proof sufficient conditions under which theorem 2 A) holds i.e. we need that a limit of nonextenders must be a nonextender
itself.
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Note that although the medial axis is connected under the assumptions stated in theorem 8 the cut locus is generally
not connected as we explain in the subsequent

∞Remark : Even if ∂B is a C -smooth simple closed planar curve bounding a topological disc B then the cut locus C∂B
is generally not connected unless B is convex. Moreover the cut locus C may even have arbitrarily many connected∂B

2components in R \B, each of which may start in a curvature center of the curve C . Those components being∂B
unbounded will proceed to infinity.

4.2 The Reconstruction of a Solid by its Medial Axis
The preceding theorem explained the relations between the topological (global shape) structure of a bordered
manifold B and its medial axis M(B). Next, we are going to discuss how it is possible to reconstruct B via M(B) .
Before that, note that the maximal disc radius function:

r⋅M(B) → R

which was defined by r(x) : = d(∂B, x ) is obviously a continuous function, because d(A, . ) is continuous for any
nclosed set A in R ; d(A, . ) is even Lipschitz continuous and its restriction to M(B) is Lipschitz continuous as well.

The result of this section is the

Theorem 9:  (Reconstruction Theorem:)
Assume we know the medial axis transform M(B), r: M(B) → R of a domain B, then we can reconstruct
B. Namely, we have:

B = ∪ K(x,r(x))
x ∈ M(B)

where the union is taken for all discs with center x ∈ M(B) with
nK(x,r(x)) = {y ∈ R / |x−y | ≤ r(x)}.

Proof of the Reconstruction Theorem:

We want to prove that

B = ∪ K(x,r(x)) (87)
x ∈ M(B)

For this we show the following assertions

B ⊃ ∪ K(x,r(x)) (88)
x ∈ M(B)

B ⊂ ∪ K(x,r(x)) (89)
x ∈ M(B)

Clearly (87) is a consequence of (88) and (89).
Assertion (88) is true as

B ⊃ K(x,r(x)) for all points x ∈ M(B) (90)
nWe show (90).  Namely by definition r(x) = d(x, ∂B). Now in case K(x,r(x)) would contain any point y ∈ R \ B then

by proposition 1 the segment connecting x and y would contain a boundary point z with a distance smaller than r(x)
to x a contradiction. This proves (90).

In order to prove (89) we show that:

For every point y ∈ B there exists a point xo

such that y ∈ K(x ,r(x )). (91)o o
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If here y ∈ M(B) then the claim (91) is obviously true because y ∈ K( y, r(y) ) even if r(y) is zero.  Therefore assume
y ∉ M( B ) thus

d(y,M(B)) > 0 (92)

nbecause M(B) is a closed subset of R . Now as B is a manifold with boundary ∂B it is possible to approximate y
with a sequence of points y ∈ (B\∂B). For every point y in this sequence there exists a minimal join s to then n n

−boundary ∂B , see [52]. It is possible to extend any of these minimal joins s to get a minimal join s from then n
boundary ∂B to a point q in M(B). Recall by theorem 1 is M(B) = B∩C . Therefore employing the definition ofn ∂B
C any minimal join from the boundary ∂B to a point b ∈ (B \ ∂B ) can be extended as a minimal join α until it hits∂B

− −M(B) in a point q. Thus α yields then also a minimal join from q to ∂B. We can choose a subsequence s of sn nk
- −23which converges against a minimal join s, see [52], Busemann. The segment s is a minimal join from ∂B to a

−point in M(B). Note the sequence of segments s contains a sequence of points y (being a subsequence of y )n n nk k
− − −which converges against y. Therefore the limit segment s contains y. As all s meet M(B) also the limit segment snk

−meets M(B) in some point. Let x(y) be the point where the segment s meets the first time M(B). The point x(y) is not
on the boundary ∂B because
d( y, M(B) ) > 0 by (92); note that

d( x(y) , ∂B ) ≥ d(x(y) , y ) (93)

−because s being a minimal join from ∂B to x(y) contains y .

To finish the proof of (91) we choose in (91) x = x(y). Now (93) and the definition of the maximal disc radiuso
function r( . ) imply

K(x , d(x(y) , y ) ) ⊂ K(x , d(x , ∂B ) ) = K( x , r(x(y)) ) (94)o o o o

Therefore as y ∈ K(x , d(x(y),y) ) we have y ∈ K(x , r(x )).o o o
This proves (91) and finishes the proof of the reconstruction theorem.

5 Appendix
We supply here in the appendix several lemmata used by us in the proofs of major theorems in the preceding
sections. Some of those lemmata may be considered to be of technical character while others may be of geometrical
interest per se.

2 2Lemma A.1: Let B be a compact solid in R and assume that ∂B is piecewise C -smooth or let B be a compact solid
n 2in R and assume ∂B is C - smooth. Then the following claims hold:

• A) A limit of picas respective ∂B is a non-extender respective ∂B. Specifically a limit of picas is a pica
or a curvature center of ∂B; it may be both e.g. a center of a circle.

• B) A limit of non-extenders respective ∂B is a nonextender respective ∂B.

• C) A nonextender is either a pica or a curvature center respective ∂B. It may be both e.g. center of a
circle. If a nonextender is not a pica then it must be a curvature center respective ∂B.

2• D) If the boundary ∂B ⊂ B ⊂ R is piecewise linear then every nonextender is a pica.

2 nProof of lemma A.1: We first prove lemma A.1 A),B),C) in case ∂B is a C -smooth hypersurface of R . In this case

23It is here necessary to choose a subsequence because there may exist several distinct minimal joins all being cluster points of the sequence s .n
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lemma A.1 A),B),C) are contained in theorem 5.3 of [52]. Indeed the latter theorem 5.3 covers the more general case
nwhere R can be replaced by any complete n-dimensional Riemannian manifold. Thus for the proof of lemma A.1

2 nA),B),C) in case ∂B is a C -smooth hypersurface of R it is sufficient to refer to theorem 5.3 in [52].

2Thus it remains to prove lemma A.1 A),B),C) in case ∂B is only piecewise C here however employing the
2additional assumption that R ⊃ B ⊃ ∂ B. We first prove now part A) of lemma A1.1. The other parts B) and C) will

further below be shown to be easy conclusions of part A).

Proof of lemma A.1 A): We want to prove that

a limit of picas respective ∂B is a nonextender respective ∂B (95)

We argue by contradiction and assume for this purpose that

there exists a sequence of picas q respective ∂Bn
whose limit is an extender respective ∂B (96)

Each q being a pica has at least two distinct nearest points p , p on ∂B. If now the sequence q converges againstn n1 n2 n
a point q being a pica then there is nothing more to prove because then the limit q is a nonextender. Let uso o
therefore assume the case that q is not a pica.  In that case the foot point sequences p , p converge against ao n1 n2
(unique) point p being the foot point of q this foot point is characterized by the subsequent distance propertyo o

d( ∂B, q ) = d( p , q ) (97)o o o

We show now first that

the segment seg[p ,q ] is normal on ∂B (98)o o
2The point p must be contained in a boundary edge. This edge is represented by a path b(t):[0,1] → R being ao

2regular C parametrization, with b(0), b(1) being vertex points. This means each of the points b(0), b(1) is contained
in an edge adjacent to b[0,1].  Now

if p = b(t ) is not a vertex point then it is easily seen thato o
the segment seg[q ,p ] being a minimal join to b(0,1) must be normal on b(0,1). (99)o o

Let us therefore assume that p is a vertex point of b[0,1] say p =b(1). The sequences p ,p converge against p .o o n1 n2 o
24Therefore there exists a disc K(p ,δ) which contains no other boundary vertex except p and all p , p for no o n1 n2

larger than a certain number N(δ) are contained in K(p ,δ). For each given n not both points p , p can coincideo n1 n2
25with p . Thus we can assume that p ≠ p for all n ≥ N(δ) . Therefore p must be contained either ino n1 o n1

b(0,1) = {b(t) / 0 < t < 1 } or in the adjacent edge c(0,1) = {c(t) / 0 < t < 1 } where b(1)=c(0).  In any case
26we find a sequence of points p which is contained say in b(0,1)n1

and p converges toward p . (100)n1 o

Now

by conclusion (99) for n ≥ N(δ)
the segment seg[q ,p ] must be normal on b(0,1). (101)n n1

As the normal vector of b[0,1] is continuous up to the boundary also the limit segment seg[q ,p ] is normal on b[0,1]o o
in b(1). This proves (98).

Note further down we shall make use of the property that every boundary edge can be viewed to be a subpart of an
−2 2enclosing open regular C smooth path.  Thus say b[0,1] is subpath of a C regular path b( −ε, 1+ε ) . This subpath

2property can be shown by extending the path b[0,1] C -smooth and regular beyond the boundary points.  We can
−define the extension b( t ) of the path b(t) by:

24This holds because the number of boundary vertices is finite.

25This can be achieved by swapping p with p as far as this is necessary.n1 n2

26If necessary we swap the notations for the edges c[0,1] and b[0,1]
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−b(t) = b(t) for t ≤ 1

and for t ≥ 1 by
− ′ ′′ 2b(t) = b(1) + b (1) (t − 1) + (1/2)b (1) (t − 1) (102)

The extension beyond the point b(0) can be defined analogous.

− 2It is easily seen that this extension b[ −ε, 1+ε ] is C -smooth, regular and
free of self intersections if ε is chosen sufficiently small. (103)

Let the segment seg[q ,p ] be represented by an arc length parametrized path w(s) with w(0)=p ando o o
w(|p − q |)=q . Now if the point q were a curvature center respective the foot point p and the arc b[1-ε,1] then weo o o o o
could show that q is a nonextender respective the boundary arc b[1-ε,1]. This means for any γ > 0 it is possible too
construct a path starting in b[1-ε,1] and ending in w(|p − q | + γ) and this path is shorter than |p − q | + γ. Theo o o o
latter claim follows e.g. from a more general result in [52] which gives an extension of a theorem of Jacobi.
Therefore and because seg[q ,p ] is a minimal join from ∂B to q :o o o

the assumption that q is a curvature center respective the pointo
p =b(1) and the arc b[1-ε,1] implies that q is nonextender. (104)o o

Therefore our initial contradiction assumption (96) saying that q is an extender respective ∂B leads us to concludeo
that the point q is not a curvature center respective the arc b[1-ε,1]. Now if q is not a curvature center of b(1) then:o o

the normal map
27φ(r,t) = b(t) + r N(b(t))

yields for sufficiently small numbers β,ω > 0
a diffeomorphism

28φ:U =[r -β,r +β] × [1-ω,1] → D ={φ(r,t)/ (r,t) ∈ U }b o o b b
with φ(r , 1 ) = q (105)o o

Now choosing some sufficiently small ρ then in view of (100) we can assume that all picas q in K(q ,ρ) have theirn o
foot point p in b(1-λ,1) and the points q must be in D if ρ is sufficiently small.  Therefore and because of then1 n b

29diffeomorphy property (105) the other foot point p of q must be in the adjacent boundary arc c[0,1) . Next wen2 n
show that p cannot agree with c(0)=b(1)=p . This follows from a sublemma which we state now:n2 o

n n+1 2Sublemma A.1A’: Let f:[0,1] → R be a regular C -smooth hypersurface patch. Denote the surface normal at f(x)
nby N(f(x)) and assume that for some x in (0,1) and for some r > 0 the segment { f( x ) + r N( f(x ) ) / 0 ≤ r ≤ r }o o o o o

does not contain a curvature center respective the point f(x ) on this surface patch. Then there exists a disc K(x ,ε) ino o
nR around x and an interval (r - δ, r + δ) such that for all (x,r) ∈ D = ( K( x , ε ) × ( r − δ,r + δ) ) the normalo o o o o o o

segments g(x,r) = { f( x ) + s N( f(x) ) / 0 ≤ s ≤ r } are distance minimal to the subpatch P = { f(x) / x ∈ K( x , ε ) }. Thisε o
− −implies that for any (x,r) ∈ D any segment g joining the point f(x)+rN(f(x)) with P is longer than g(x,r) unless g agreeso ε

30with g(x,r) .

A proof of this sublemma is not very difficult and can be given by exploiting the local diffeomorphy of the normal
map onto the neighborhood of a point which is not a curvature center.  This sublemma can also be viewed as a

2special case of a combination of two results saying that geodesics emanating normal from a C - smooth
hypersurface are locally distance minimal up to their first focal point and that if y is not a focal point respective

27Here N(b(t)) denotes the normal vector of the curve b(t) at the foot point b(t).

28Note that this diffeomorphism is defined using the restriction of a diffeomorphism which is originally defined on a larger open set
−U-=(r -β,r +β) × (1- 2 ω,1+ 2 ω) where φ(r,t) is now defined for t ≥ 1 is now defined by using the extension b(t) described in ( 102).b o o

29Note we use here that (105) guarantees that the normals emanating from b(1−2ω,1] do not intersect in D .b

30This implication holds because of the following argument:  First we observe that the sublemma implies with the interval (r −δ,r +δ) being open that for any
o o

− − − − − − − − −(x ,r ) ∈ D the point q(x ,r ) = f(x )+r N(f(x ) ) is an extender with respect to P . This excludes that there exists some other minimal join from q(x , r ) to P besides
o ε ε

− −g(x ,r ).
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some submanifold S then a whole open neighborhood of y stays free of focal points respective S c.f. [52]. Therefore
we don’t give here a proof of this sublemma.

The sublemma implies in our situation that if for sufficiently large indices n the foot points p , p are both onn1 n2
b[1,1-λ) then p =p . This yields a contradiction because p ≠ p . This implies in our situation that forn1 n2 n1 n2
sufficiently large n the point p is unequal to q =c(0), hence p is in the open interval c(0,1). Now recall qn2 o n2 n
converges to q , therefore for sufficiently large numbers n the point q must either be an interior point of theo n
topological disc D or q is on the segment { φ(r,1) / r ≤ r ≤ r +β }. Clearly for large enough n the foot pointb n o o
p ∈ c(0,1) is outside D and the segments w =seg[q ,p ] must meet the boundary of the topological disc D inn2 b n n n2 b
some point z . Using that p is in c(0,1) and that w converges toward the segmentn n2 n
seg[b(1), q ] = { φ(r,1) / 0 ≤ r ≤ r } it is not difficult to see that for large enough numbers n the the intersectiono o
point z must be located on the segment { φ(r,1) / 0 ≤ r ≤ r +δ }. Using that the segment seg[z , p ] is a minimaln o n n2
join to the boundary ∂B it is also not hard to prove that the segment seg[b(1), z ] cannot be extended as a minimaln
join to the boundary ∂B beyond the point z . Therefore and because z must converge to q with q it follows thatn n o n
the point q must be a nonextender respective ∂B. Thus we get a contradiction with our assumption that q is ano o
extender. This shows that a limit of picas must be a nonextender and proves the first part of lemma A.1A).

It still remains to show that q must be a curvature center respective its foot point if it is not a pica. Let us assumeo
that q is not a curvature center respective its foot point b(1) on any of both adjacent arcso
b(0,1] = { b(s) / 0 < s ≤ 1 },c[ 0, 1) = { c(s) / 0 ≤ s ≤ 1 } and let us derive a contradiction. Precisely we shall show that
q is the first curvature center (on the segment seg[b(1), q ] ) respective the foot point b(1) on at least one of theo 0
two arcs b(0,1] , c[0,1) . For this we need to return to the considerations in the preceding proof. The preceding proof
used 3 assumptions
1) q is a limit of picaso
2) q itself is not a picao
3) q is an extendero
We still need assumption 1) and 2) for the proof of the second part of lemma A.1A).  The only locations in the
preceding proof where we used the assumption that q is an extender was (except at the very end) when we used it too
conclude that q is not a curvature center respective p on b[0,1] and p on c[0,1]. In this proof we can now assumeo o o
directly the non-curvature center property of q and we don’t need the nonextender property. Recall the picas q areo n
related to minimal joins (segments) seg[p , q ], seg[p , q ] which converge to a minimal join being the segmentn1 n n2 n2
seg[ b(1), q ]. Because of this minimal length property the open segment seg[b(1), q ) which does not include qo o o
cannot contain any curvature center respective the foot point q on any of the arcs b(0,1], c[1,0) by (104).  Arguingo
by contradiction we assume now also that q is not a curvature center respective the point b(1) = c(0) on both arcso
b(0,1], c[0,1). Therefore analogue to (105) we can now describe a diffeomorphism ψ(r,s) : U → D employing thec c
normal map with normals of the path c(s). Note that here now ψ(r , 0) = q and also like in proof of (98) we get nowo o
{ψ(r, 0) / 0 ≤ r ≤ r } = seg[b(1), q ]. In the proof above ( with q converging to q ) the segments seg[p , q ] beingo o n o n2 n
subparts of normals on the curve c[0,1) were shown to intersect { ψ( r, 0) / r − β ≤ r ≤ r + β }. This yields ao o
contradiction with the assumption that ψ : U → D is a diffeomorphism.  This proves that q must be a curvaturec c o
center of its foot point respective at least one of the arcs b(0,1],c[0,1). This completes the proof of lemma A.1A).

Proof of Lemma A.1B): Let q be a sequence of nonextenders converging against a limit point q . We have ton o
prove that q is a non-extender.  By theorem 2A) every nonextender is limit of a sequence of picas. Therefore foro

− −every n we can find a pica q within distance 1/n to q . Together with the sequence q also the sequence of picas q isn n n n
converging to q . Thus by lemma A.1A) the limit q is a nonextender. This proves lemma A.1B).o o

Proof of Lemma A.1C): By theorem 2A) every nonextender is a limit of picas.  Lemma A.1A) states that a limit of
picas has the properties claimed by lemma A.1C) for any nonextender. Therefore the combination of lemma A.1A)
and theorem 2A) prove lemma A.1C).

Proof of Lemma A.1D): Lemma A.1D) is a special case of lemma A.2B).  Therefore lemma A.1D) follows from
lemma A.2 given below. This proves lemma A.1D) and completes the proof of lemma A.1.
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We finally present a result which pertains to the practically important special case where the solid B is contained in
3R and where ∂B is piecewise linear. This means the solid’s boundary consists of planar facets with edges being

straight line segments.  The subsequent lemma A.2 characterizes nonextenders and it also describes properties of
limit points of nonextenders.

3Lemma A.2: Let B be a compact solid in R and assume that ∂B is piecewise linear. Then the following statements
hold :

• A) If a limit of picas is not a pica then its nearest point q on ∂B is a vertex point of ∂B i.e. q is contained
in more than two boundary planes.

• B) Every nonextender respective ∂B is a pica.

Proof of Lemma A.2: Every boundary plane P has a unique interior normal N . The number of those normals isi i
finite. Let ξ > 0 be the smallest angle built by any two distinct (interior) boundary normals of ∂B.

Proof of Lemma A.2 A: We first show part A) of lemma A.2. For this we show that:

If a limit of picas is not a pica then its foot point on ∂B is a vertex point i.e. the foot (106)
point is contained in more than two boundary planes.

To prove (106) we assume that its negation is true and derive a contradiction. Therefore assume there exists a
sequence of picas q converging to a non-pica q and the foot point p of q is contained in at most two hyperplanesn 0 0 0
31. Clearly as q is not a picao

the minimal joins from q to the boundary mustn
converge against the segment joining q with p . (107)o o

As p is not a vertex there exists a small disc K(p ,δ) such that K(p ,δ) meets at most two hyperplanes P , P ando 0 0 1 2
there is no vertex in K(p ,δ). It is obvious that K(p ,δ) must meet at least two boundary planes with distinct normals0 0
because

the foot point p of q cannot be an interior0 0
point of a boundary plane piece P with normal N . (108)1 1

As otherwise (for sufficiently large numbers n) the minimal segments g joining q with ∂B are either parallel to Nn n 1
or built an angle ang larger than some positive number κ with N where N is parallel to the segment g joining qn 1 1 o o
with p . This would yield a contradiction with the assumption (107) because the fact that the q are picas togethero n
with (107) implies that the angles ang attain arbitrarily small positive values. This proves (108). Therefore we cann
now assume that K(p ,δ) meets precisely two hyperplanes P , P with normals N , N respectively. Let γ be theo 1 2 1 2
angle built by the two normals N , N . As the limit of the picas q is not a pica and as the foot points p , p must1 2 n n1 n2
converge against p there exists a disc K(q ,ε) and a disc K(p ,η) such that:o o o

For all q in K(q , ε) the foot points p , p are in K(p , η) and all pairsn o n1 n2 o
of segments seg[q ,p ], seg[q ,p ] build an angle smaller than γ/10. (109)n n1 n n2

It can also be arranged that ε in (109) can be chosen so small that :

The convex hull CO of K(p ,η) ∪ K(q ,ε) meets only the planes P , P . (110)o o 1 2

Here (110) holds because seg[p ,q ]\{ p } does not meet ∂B. Let us take any pica q in K(q ,ε). The point q haso o o n o n
(at least) two distinct foot points in K(p ,η). At most one of the two segments can be normal on a boundaryo
hyperplane because of the angle provision (109). Assume that say p is an interior point of one of the two planesn1

32say of P The other foot point p can not be an interior point of P because of the angle provision (109).1 n2 2
Therefore p ∈ P ∩ P ∩K( p , η ) . Thusn2 1 2 o

2 2length(seg[q ,p ]) = √|q − p | + |p − p | > length( seg[ p , p ] ) (111)n n2 n n2 n1 n2 n2 n2

31To simplify our notation we shall call a nearest boundary point of any point q the foot point of q.

32If p is an interior point of P we swap the names of the two planes.n1 2
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a contradiction with the assumption that p , p are both foot points of q . These considerations imply that bothn1 n2 n
points p , p must be edge points thusn1 n2

{p , p } ⊂ P ∩ P ⊂ K(p , η) .n1 n2 1 2 o

Now

The segment seg[p ,p ] is contained in D = P ∩ P ⊂ ∩ K(p , η) (112)n1 n2 1 2 o

because D is convex as an intersection of convex sets. The planar triangle W with the vertices p , p , q isn1 n2 n2
contained in the convex set CO defined in (110).  The triangle W has two edges seg[q ,p ], seg[q ,p ] of equaln n1 n n2
length. Clearly by (112) the mid point m of seg[p ,p ] is in ∂B. Therefore the segment seg[m,q ] yields a boundaryn1 n2 n
join shorter than say seg[q ,p ], a contradiction.  This shows that the foot point p must be vertex point i.e.  pn n1 o o
meets more than two boundary planes.  This proves part A) of lemma A.2.

Remark: Actually we also proved above that if the segment angle of a pica is smaller than some positive number
then the foot points of this pica must be located close to a vertex point.  Moreover analyzing the preceding geometric
considerations it is not difficult to derive an estimation for the distance of a pica foot point to the nearest boundary
vertex. This estimation would incorporate the segment angle of the pica.

Proof of Lemma A.2 B: Using lemma A.2 A) we show now lemma A.2 B). That is we prove that a nonextender is
necessarily a pica if ∂B is piecewise linear. For the proof we argue by contradiction. Namely we derive a
contradiction from the negation of lemma A.2 B). For this purpose we assume that there exists a nonextender qo
which is not a pica.  By theorem 2 the picas are dense in the set of nonextenders, thus q is limit of a sequence ofo
picas q . By lemma A.2 A) the foot point p of q is a boundary vertex. As q is a nonextender respective ∂B wen o o o
know that for any ε > 0 the extension of seg[p ,q ] by length ε to a point q (beyond q ) is not a minimal join to theo o ε o
boundary. Therefore there exists a minimal join g from q to the boundary which meets ∂B in a point p . The pointε ε ε
p is different from p as otherwise the extension of seg[p ,q ] would be minimal join to the boundary.  As q is notε o o o o
a pica the segment g is converging towards seg[p ,q ] and p converges toward p if ε converges to 0. Since theε o o ε o
number of boundary vertices is finite there exists a positive number δ such that K(p ,δ) contains only the boundaryo
vertex p . Every segment joining a point of ∂B∩K( p , δ) with the vertex p is completely contained ino o o

33∂B∩K( p , δ) . Now choose the ε for the extension of seg[p ,q ] so small that the foot point p of q (definedo o o ε ε
above) is contained say in ∂B∩K( p , δ/10 ) . The segment seg[p ,p ] as well as its extension by length δ/3 beyond po o ε ε
are contained in ∂B∩K( p , δ) . Let p be the end point of this extension of e=seg[p ,p ]. If e is not normal ono e o ε
seg[p ,p then it is easily seen that e contains a point p such that seg[p ,q ] yields a shorter join to the boundaryo ε d d ε
than the minimal join seg[p ,q ] a contradiction. Thus seg[p ,q ] must be orthogonal on e.  Now the points p ,p ,qε ε d ε o ε ε
built a triangle with a rectangular angle at vertex p . This triangle contains a segment g which joins q with e and g isε
parallel to seg[p ,q ]. Clearly g is shorter than the minimal join seg[q ,p ] unless g and seg[q ,p ] agree. Thus g andd ε o o o o
seg[q ,p ] must agree. However this is not possible because the assumption q being a nonextender implied that po o o
and p are distinct c.f. above. Therefore we get a contradiction with our assumption of the proof of lemma A.2 B).ε
This completes the proof of lemma A.2 B).
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